↓ Skip to main content

Auditory Responses of Engrailed and Invected-Expressing Johnston’s Organ Neurons in Drosophila melanogaster

Overview of attention for article published in PLOS ONE, August 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Auditory Responses of Engrailed and Invected-Expressing Johnston’s Organ Neurons in Drosophila melanogaster
Published in
PLOS ONE, August 2013
DOI 10.1371/journal.pone.0071419
Pubmed ID
Authors

Adeline Pézier, Jonathan M. Blagburn

Abstract

The roles of the transcription factor Engrailed (En), and its paralogue Invected (Inv), in adult Drosophila Johnston's Organ sensory neurons are unknown. We used en-GAL4 driven CD8-GFP and antibody staining to characterize these neurons in the pedicel (second antennal segment). The majority of En and Inv-expressing Johnston's Organ neurons (En-JONs) are located in the ventral part of the posterior group of JONs, with only a few in the medial group. Anatomical classification of En-JON axon projections shows they are mainly type A and E, with a few type B. Extracellular recording of sound-evoked potentials (SEPs) from the antennal nerve was used along with Kir2.1 silencing to assess the contribution that En-JONs make to the auditory response to pure-tone sound stimuli. Silencing En-JONs reduces the SEP amplitude at the onset of the stimulus by about half at 100, 200 and 400 Hz, and also reduces the steady-state response to 200 Hz. En-JONs respond to 82 dB and 92 dB sounds but not 98 dB. Despite their asymmetrical distribution in the Johnston's Organ they respond equally strongly to both directions of movement of the arista. This implies that individual neurons are excited in both directions, a conclusion supported by reanalysis of the morphology of the pedicel-funicular joint. Other methods of silencing the JONs were also used: RNAi against the voltage-gated Na⁺ channel encoded by the para gene, expression of attenuated diphtheria toxin, and expression of a modified influenza toxin M2(H37A). Only the latter was found to be more effective than Kir2.1. Three additional JON subsets were characterized using Flylight GAL4 lines. inv-GAL4 88B12 and Gycβ100B-GAL4 12G03 express in different subsets of A group neurons and CG12484-GAL4 91G04 is expressed in B neurons. All three contribute to the auditory response to 200 Hz tones.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 6 17%
Student > Ph. D. Student 5 14%
Student > Master 4 11%
Researcher 3 8%
Student > Postgraduate 3 8%
Other 7 19%
Unknown 8 22%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 36%
Neuroscience 9 25%
Biochemistry, Genetics and Molecular Biology 2 6%
Immunology and Microbiology 1 3%
Business, Management and Accounting 1 3%
Other 0 0%
Unknown 10 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 August 2013.
All research outputs
#18,345,259
of 23,577,654 outputs
Outputs from PLOS ONE
#154,641
of 202,026 outputs
Outputs of similar age
#143,845
of 199,180 outputs
Outputs of similar age from PLOS ONE
#3,479
of 4,862 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 202,026 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.3. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 199,180 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4,862 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.