↓ Skip to main content

Probiotics for people with hepatic encephalopathy

Overview of attention for article published in Cochrane database of systematic reviews, February 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)
  • Average Attention Score compared to outputs of the same age and source

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
135 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Probiotics for people with hepatic encephalopathy
Published in
Cochrane database of systematic reviews, February 2017
DOI 10.1002/14651858.cd008716.pub3
Pubmed ID
Authors

Rohan Dalal, Richard G McGee, Stephen M Riordan, Angela C Webster

Abstract

Hepatic encephalopathy is a disorder of brain function as a result of liver failure or portosystemic shunt or both. Both hepatic encephalopathy (clinically overt) and minimal hepatic encephalopathy (not clinically overt) significantly impair patient's quality of life and daily functioning, and represent a significant burden on healthcare resources. Probiotics are live micro-organisms, which when administered in adequate amounts, may confer a health benefit on the host. To determine the beneficial and harmful effects of probiotics in any dosage, compared with placebo or no intervention, or with any other treatment for people with any grade of acute or chronic hepatic encephalopathy. This review did not consider the primary prophylaxis of hepatic encephalopathy. We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, conference proceedings, reference lists of included trials, and the World Health Organization International Clinical Trials Registry Platform until June 2016. We included randomised clinical trials that compared probiotics in any dosage with placebo or no intervention, or with any other treatment in people with hepatic encephalopathy. We used standard methodological procedures expected by The Cochrane Collaboration. We conducted random-effects model meta-analysis due to obvious heterogeneity of participants and interventions. We defined a P value of 0.05 or less as significant. We expressed dichotomous outcomes as risk ratio (RR) and continuous outcomes as mean difference (MD) with 95% confidence intervals (CI). We included 21 trials with 1420 participants, of these, 14 were new trials. Fourteen trials compared a probiotic with placebo or no treatment, and seven trials compared a probiotic with lactulose. The trials used a variety of probiotics; the most commonly used group of probiotic was VSL#3, a proprietary name for a group of eight probiotics. Duration of administration ranged from 10 days to 180 days. Eight trials declared their funding source, of which six were independently funded and two were industry funded. The remaining 13 trials did not disclose their funding source. We classified 19 of the 21 trials at high risk of bias.We found no effect on all-cause mortality when probiotics were compared with placebo or no treatment (7 trials; 404 participants; RR 0.58, 95% CI 0.23 to 1.44; low-quality evidence). No-recovery (as measured by incomplete resolution of symptoms) was lower for participants treated with probiotic (10 trials; 574 participants; RR 0.67, 95% CI 0.56 to 0.79; moderate-quality evidence). Adverse events were lower for participants treated with probiotic than with no intervention when considering the development of overt hepatic encephalopathy (10 trials; 585 participants; RR 0.29, 95% CI 0.16 to 0.51; low-quality evidence), but effects on hospitalisation and change of/or withdrawal from treatment were uncertain (hospitalisation: 3 trials, 163 participants; RR 0.67, 95% CI 0.11 to 4.00; very low-quality evidence; change of/or withdrawal from treatment: 9 trials, 551 participants; RR 0.70, 95% CI 0.46 to 1.07; very low-quality evidence). Probiotics may slightly improve quality of life compared with no intervention (3 trials; 115 participants; results not meta-analysed; low-quality evidence). Plasma ammonia concentration was lower for participants treated with probiotic (10 trials; 705 participants; MD -8.29 μmol/L, 95% CI -13.17 to -3.41; low-quality evidence). There were no reports of septicaemia attributable to probiotic in any trial.When probiotics were compared with lactulose, the effects on all-cause mortality were uncertain (2 trials; 200 participants; RR 5.00, 95% CI 0.25 to 102.00; very low-quality evidence); lack of recovery (7 trials; 430 participants; RR 1.01, 95% CI 0.85 to 1.21; very low-quality evidence); adverse events considering the development of overt hepatic encephalopathy (6 trials; 420 participants; RR 1.17, 95% CI 0.63 to 2.17; very low-quality evidence); hospitalisation (1 trial; 80 participants; RR 0.33, 95% CI 0.04 to 3.07; very low-quality evidence); intolerance leading to discontinuation (3 trials; 220 participants; RR 0.35, 95% CI 0.08 to 1.43; very low-quality evidence); change of/or withdrawal from treatment (7 trials; 490 participants; RR 1.27, 95% CI 0.88 to 1.82; very low-quality evidence); quality of life (results not meta-analysed; 1 trial; 69 participants); and plasma ammonia concentration overall (6 trials; 325 participants; MD -2.93 μmol/L, 95% CI -9.36 to 3.50; very low-quality evidence). There were no reports of septicaemia attributable to probiotic in any trial. The majority of included trials suffered from a high risk of systematic error ('bias') and a high risk of random error ('play of chance'). Accordingly, we consider the evidence to be of low quality. Compared with placebo or no intervention, probiotics probably improve recovery and may lead to improvements in the development of overt hepatic encephalopathy, quality of life, and plasma ammonia concentrations, but probiotics may lead to little or no difference in mortality. Whether probiotics are better than lactulose for hepatic encephalopathy is uncertain because the quality of the available evidence is very low. High-quality randomised clinical trials with standardised outcome collection and data reporting are needed to further clarify the true efficacy of probiotics.

Twitter Demographics

The data shown below were collected from the profiles of 11 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 135 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 135 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 25 19%
Unspecified 23 17%
Student > Bachelor 22 16%
Student > Ph. D. Student 22 16%
Researcher 15 11%
Other 28 21%
Readers by discipline Count As %
Medicine and Dentistry 51 38%
Unspecified 25 19%
Nursing and Health Professions 13 10%
Agricultural and Biological Sciences 7 5%
Psychology 7 5%
Other 32 24%

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2017.
All research outputs
#1,787,280
of 12,913,810 outputs
Outputs from Cochrane database of systematic reviews
#4,442
of 10,443 outputs
Outputs of similar age
#51,975
of 253,079 outputs
Outputs of similar age from Cochrane database of systematic reviews
#125
of 241 outputs
Altmetric has tracked 12,913,810 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,443 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.4. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 253,079 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 241 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.