↓ Skip to main content

Ablation of the Id2 Gene Results in Altered Circadian Feeding Behavior, and Sex-Specific Enhancement of Insulin Sensitivity and Elevated Glucose Uptake in Skeletal Muscle and Brown Adipose Tissue

Overview of attention for article published in PLOS ONE, September 2013
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
18 news outlets
blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Ablation of the Id2 Gene Results in Altered Circadian Feeding Behavior, and Sex-Specific Enhancement of Insulin Sensitivity and Elevated Glucose Uptake in Skeletal Muscle and Brown Adipose Tissue
Published in
PLOS ONE, September 2013
DOI 10.1371/journal.pone.0073064
Pubmed ID
Authors

Deepa Mathew, Peng Zhou, Cameron M. Pywell, Daan R. van der Veen, Jinping Shao, Yang Xi, Nicolle A. Bonar, Alyssa D. Hummel, Sarah Chapman, W. Matthew Leevy, Giles E. Duffield

Abstract

Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2-/-) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2-/- mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2-/- mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2-/- females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2-/- mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2-/- mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2-/- mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift work personnel among whom incidence of such metabolic disorders is elevated.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 1%
Unknown 82 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 28 34%
Student > Ph. D. Student 13 16%
Student > Bachelor 9 11%
Researcher 9 11%
Student > Doctoral Student 4 5%
Other 10 12%
Unknown 10 12%
Readers by discipline Count As %
Medicine and Dentistry 17 20%
Agricultural and Biological Sciences 14 17%
Unspecified 13 16%
Nursing and Health Professions 4 5%
Biochemistry, Genetics and Molecular Biology 3 4%
Other 18 22%
Unknown 14 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 144. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2017.
All research outputs
#237,585
of 22,723,682 outputs
Outputs from PLOS ONE
#3,553
of 193,985 outputs
Outputs of similar age
#1,892
of 198,172 outputs
Outputs of similar age from PLOS ONE
#89
of 4,992 outputs
Altmetric has tracked 22,723,682 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,985 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 198,172 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 4,992 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.