↓ Skip to main content

Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase

Overview of attention for article published in PLOS ONE, July 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

news
1 news outlet

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase
Published in
PLOS ONE, July 2013
DOI 10.1371/journal.pone.0067979
Pubmed ID
Authors

Martin R. Challand, Enrico Salvadori, Rebecca C. Driesener, Christopher W. M. Kay, Peter L. Roach, James Spencer

Abstract

The 'radical S-adenosyl-L-methionine (AdoMet)' enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 22 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 39%
Researcher 6 26%
Professor 2 9%
Student > Master 2 9%
Student > Doctoral Student 1 4%
Other 1 4%
Unknown 2 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 39%
Chemistry 6 26%
Biochemistry, Genetics and Molecular Biology 3 13%
Nursing and Health Professions 1 4%
Medicine and Dentistry 1 4%
Other 1 4%
Unknown 2 9%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 July 2013.
All research outputs
#4,157,787
of 22,723,682 outputs
Outputs from PLOS ONE
#58,940
of 193,985 outputs
Outputs of similar age
#35,716
of 194,407 outputs
Outputs of similar age from PLOS ONE
#1,205
of 4,845 outputs
Altmetric has tracked 22,723,682 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 193,985 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 194,407 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 4,845 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.