↓ Skip to main content

Validation of the “smart” minimum FFR Algorithm in an unselected all comer population of patients with intermediate coronary stenoses

Overview of attention for article published in The International Journal of Cardiovascular Imaging, March 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Validation of the “smart” minimum FFR Algorithm in an unselected all comer population of patients with intermediate coronary stenoses
Published in
The International Journal of Cardiovascular Imaging, March 2017
DOI 10.1007/s10554-017-1126-y
Pubmed ID
Authors

Barry Hennigan, Nils Johnson, John McClure, David Corcoran, Stuart Watkins, Colin Berry, Keith G. Oldroyd

Abstract

Using data from a commercial pressure wire system (St. Jude Medical) we previously developed an automated "smart" algorithm to determine a reproducible value for minimum FFR (smFFR) and confirmed that it correlated very closely with measurements made off-line by experienced coronary physiology core laboratories. In this study we used the same "smart" minimum algorithm to analyze data derived from a different, commercial pressure wire system (Philips Volcano) and compared the values obtained to both operator-defined steady state FFR and the online automated minimum FFR reported by the pressure wire analyser. For this analysis, we used the data collected during the VERIFY 2 study (Hennigan et al. in Circ Cardiovasc Interv, doi: 10.1161/CIRCINTERVENTIONS.116.004016 ) in which we measured FFR in 257 intermediate coronary stenoses (mean DS 48%) in 197 patients. Maximal hyperaemia was induced using intravenous adenosine (140 mcg/kg/min). We recorded both the online minimum FFR generated by the analyser and the operator-reported steady state FFR. Subsequently, the raw pressure tracings were coded, anonymised and 256/257 were subjected to further off-line analysis using the smart minimum FFR (smFFR) algorithm. The operator-defined steady state FFR correlated well with smFFR: r = 0.988 (p < 0.001), average bias 0.008 (SD 0.014), 95% limits of agreement -0.020 to 0.036. The online automated minimum FFR also correlated well with the smFFR: r = 0.998 (p < 0.001), average bias 0.004 (SD 0.006), 95% limits of agreement -0.016 to 0.008. Finally, the online automated minimum FFR correlated well the operator-reported steady state FFR: r = 0.988 (p < 0.001), average bias 0.012 (SD 0.014), 95% limits of agreement -0.039 to 0.015. In 95% of lesions studied (244/256), the operator reported steady-state FFR, smFFR, and online automated minimum FFR agreed with each other to within 0.04, which is within the previously reported test/retest limits of agreement of FFR reported by an experienced core lab. Disagreements >0.05 among methods were rare but in these cases the two automated algorithms almost always agreed with each other rather than with the operator-reported value. Within the VERIFY 2 dataset, experienced operators reported a similar FFR value to both an online automated minimum (Philips Volcano) and off-line "smart" minimum computer algorithm. Thus, treatment decisions and clinical studies using either method will produce nearly identical results.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Other 4 19%
Researcher 3 14%
Professor 2 10%
Student > Bachelor 2 10%
Student > Ph. D. Student 2 10%
Other 1 5%
Unknown 7 33%
Readers by discipline Count As %
Medicine and Dentistry 6 29%
Computer Science 3 14%
Physics and Astronomy 2 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Engineering 1 5%
Other 0 0%
Unknown 8 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 July 2017.
All research outputs
#17,289,387
of 25,382,440 outputs
Outputs from The International Journal of Cardiovascular Imaging
#938
of 2,012 outputs
Outputs of similar age
#206,546
of 323,203 outputs
Outputs of similar age from The International Journal of Cardiovascular Imaging
#17
of 53 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,012 research outputs from this source. They receive a mean Attention Score of 2.3. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,203 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.