↓ Skip to main content

Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy

Overview of attention for article published in Stem Cell Research & Therapy, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
127 Dimensions

Readers on

mendeley
89 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy
Published in
Stem Cell Research & Therapy, April 2017
DOI 10.1186/s13287-016-0463-4
Pubmed ID
Authors

Bingying Wang, Haoyuan Jia, Bin Zhang, Juanjuan Wang, Cheng Ji, Xueming Zhu, Yongmin Yan, Lei Yin, Jing Yu, Hui Qian, Wenrong Xu

Abstract

The administration of cisplatin is limited due to its nephrotoxic side effects, and prevention of this nephrotoxicity of cisplatin is difficult. Mesenchymal stem cell (MSC)-derived exosomes have been implicated as a novel therapeutic approach for tissue injury. In this study, we demonstrated that the pretreatment of human umbilical cord MSC-derived exosomes (hucMSC-Ex) can prevent the development of cisplatin-induced renal toxicity by activation of autophagy in vitro and in vivo. In vitro, rat renal tubular epithelial (NRK-52E) cells were pre-incubated with exosomes from hucMSC or HFL1 (human lung fibroblast cells; as control) for 30 min, and 3-methyladenine (an autophagic inhibitor) and rapamycin (an autophagic inducer) for 1 h before cisplatin treatment for 8 h, respectively. Cells were harvested for apoptosis assay, enzyme-linked immunosorbent assay (ELISA), Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). In vivo, we constructed cisplatin-induced acute kidney injury rat models. Prior to treatment with cisplatin for 0.5 h, hucMSC-Ex or HFL1-Ex were injected into the kidneys via the renal capsule. 3-methyladenine and rapamycin were injected under the kidney capsule before hucMSC-Ex. All animals were sacrificed at 3 days after cisplatin injection. Renal function, Luminex assay, tubular apoptosis and proliferation, and autophagy response were evaluated. hucMSC-Ex inhibited cisplatin-induced mitochondrial apoptosis and secretion of inflammatory cytokines in renal tubular epithelial cells in vitro. hucMSC-Ex increased the expression of the autophagic marker protein LC3B and the autophagy-related genes ATG5 and ATG7 in NRK-52E cells. Rapamycin mimicked the effects of hucMSC-Ex in protecting against cisplatin-induced renal injury, while the effects were abrogated by the autophagy inhibitor 3-methyladenine in the animals. Our findings indicate that the activation of autophagy induced by hucMSC-Ex can effectively relieve the nephrotoxicity of cisplatin. Therefore, pre-treatment of hucMSC-Ex may be a new method to improve the therapeutic effect of cisplatin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 89 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 89 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 21%
Student > Bachelor 8 9%
Researcher 7 8%
Student > Doctoral Student 7 8%
Student > Master 6 7%
Other 10 11%
Unknown 32 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 18%
Medicine and Dentistry 15 17%
Agricultural and Biological Sciences 12 13%
Pharmacology, Toxicology and Pharmaceutical Science 4 4%
Computer Science 2 2%
Other 6 7%
Unknown 34 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2017.
All research outputs
#14,277,571
of 22,963,381 outputs
Outputs from Stem Cell Research & Therapy
#1,096
of 2,428 outputs
Outputs of similar age
#172,404
of 309,848 outputs
Outputs of similar age from Stem Cell Research & Therapy
#28
of 53 outputs
Altmetric has tracked 22,963,381 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,428 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,848 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.