↓ Skip to main content

Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate

Overview of attention for article published in Respiratory Research, April 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate
Published in
Respiratory Research, April 2017
DOI 10.1186/s12931-017-0538-5
Pubmed ID
Authors

Charmion Cruickshank-Quinn, Michael Armstrong, Roger Powell, Joe Gomez, Marc Elie, Nichole Reisdorph

Abstract

Researchers investigating lung diseases, such as asthma, have questioned whether certain compounds previously reported in exhaled breath condensate (EBC) originate from saliva contamination. Moreover, despite its increasing use in 'omics profiling studies, the constituents of EBC remain largely uncharacterized. The present study aims to define the usefulness of EBC in investigating lung disease by comparing EBC, saliva, and saliva-contaminated EBC using targeted and untargeted mass spectrometry and the potential of metabolite loss from adsorption to EBC sample collection tubes. Liquid chromatography mass spectrometry (LC-MS) was used to analyze samples from 133 individuals from three different cohorts. Levels of amino acids and eicosanoids, two classes of molecules previously reported in EBC and saliva, were measured using targeted LC-MS. Cohort 1 was used to examine contamination of EBC by saliva. Samples from Cohort 1 consisted of clean EBC, saliva-contaminated EBC, and clean saliva from 13 healthy volunteers; samples were analyzed using untargeted LC-MS. Cohort 2 was used to compare eicosanoid levels from matched EBC and saliva collected from 107 asthmatic subjects. Samples were analyzed using both targeted and untargeted LC-MS. Cohort 3 samples consisted of clean-EBC collected from 13 subjects, including smokers and non-smokers, and were used to independently confirm findings; samples were analyzed using targeted LC-MS, untargeted LC-MS, and proteomics. In addition to human samples, an in-house developed nebulizing system was used to determine the potential for EBC samples to be contaminated by saliva. Out of the 400 metabolites detected in both EBC and saliva, 77 were specific to EBC; however, EBC samples were concentrated 20-fold to achieve this level of sensitivity. Amino acid concentrations ranged from 196 pg/mL - 4 μg/mL (clean EBC), 1.98 ng/mL - 6 μg/mL (saliva-contaminated EBC), and 13.84 ng/mL - 1256 mg/mL (saliva). Eicosanoid concentration ranges were an order of magnitude lower; 10 pg/mL - 76.5 ng/mL (clean EBC), 10 pg/mL - 898 ng/mL (saliva-contaminated EBC), and 2.54 ng/mL - 272.9 mg/mL (saliva). Although the sample size of the replication cohort (Cohort 3) did not allow for statistical comparisons, two proteins and 19 eicosanoids were detected in smoker vs. non-smoker clean-EBC. We conclude that metabolites are present and detectable in EBC using LC-MS; however, a large starting volume of sample is required.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 62 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 15%
Student > Ph. D. Student 7 11%
Student > Bachelor 6 10%
Other 5 8%
Student > Master 4 6%
Other 8 13%
Unknown 23 37%
Readers by discipline Count As %
Medicine and Dentistry 9 15%
Biochemistry, Genetics and Molecular Biology 7 11%
Chemistry 5 8%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Nursing and Health Professions 4 6%
Other 10 16%
Unknown 23 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 April 2017.
All research outputs
#14,918,049
of 25,382,440 outputs
Outputs from Respiratory Research
#1,498
of 3,062 outputs
Outputs of similar age
#165,740
of 324,619 outputs
Outputs of similar age from Respiratory Research
#38
of 64 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,619 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.