↓ Skip to main content

Drosophila KDEL Receptor Function in the Embryonic Salivary Gland and Epidermis

Overview of attention for article published in PLOS ONE, October 2013
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Drosophila KDEL Receptor Function in the Embryonic Salivary Gland and Epidermis
Published in
PLOS ONE, October 2013
DOI 10.1371/journal.pone.0077618
Pubmed ID
Authors

Elliott W. Abrams, Yim Ling Cheng, Deborah J. Andrew

Abstract

Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 26%
Student > Master 3 16%
Student > Ph. D. Student 3 16%
Student > Bachelor 2 11%
Professor 1 5%
Other 1 5%
Unknown 4 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 37%
Biochemistry, Genetics and Molecular Biology 6 32%
Engineering 2 11%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 August 2014.
All research outputs
#19,015,492
of 23,577,654 outputs
Outputs from PLOS ONE
#162,121
of 202,026 outputs
Outputs of similar age
#159,757
of 213,473 outputs
Outputs of similar age from PLOS ONE
#3,871
of 5,164 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 202,026 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.3. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 213,473 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5,164 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.