↓ Skip to main content

Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (67th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (62nd percentile)

Mentioned by

twitter
3 X users
patent
4 patents
facebook
1 Facebook page

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar
Published in
Biotechnology for Biofuels and Bioproducts, April 2017
DOI 10.1186/s13068-017-0784-2
Pubmed ID
Authors

Kwang Ho Kim, Tanmoy Dutta, John Ralph, Shawn D. Mansfield, Blake A. Simmons, Seema Singh

Abstract

Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). The strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 17%
Student > Master 6 13%
Student > Bachelor 6 13%
Professor 3 6%
Researcher 3 6%
Other 6 13%
Unknown 15 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 15%
Chemistry 5 11%
Engineering 5 11%
Agricultural and Biological Sciences 5 11%
Chemical Engineering 2 4%
Other 5 11%
Unknown 18 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 November 2023.
All research outputs
#7,049,212
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#455
of 1,578 outputs
Outputs of similar age
#104,383
of 324,220 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#23
of 64 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 71st percentile.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,220 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.