↓ Skip to main content

Measuring thin films using quantitative frustrated total internal reflection (FTIR)

Overview of attention for article published in The European Physical Journal E, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Measuring thin films using quantitative frustrated total internal reflection (FTIR)
Published in
The European Physical Journal E, May 2017
DOI 10.1140/epje/i2017-11542-4
Pubmed ID
Authors

Minori Shirota, Michiel A. J. van Limbeek, Detlef Lohse, Chao Sun

Abstract

In the study of interactions between liquids and solids, an accurate measurement of the film thickness between the two media is essential to study the dynamics. As interferometry is restricted by the wavelength of the light source used, recent studies of thinner films have prompted the use of frustrated total internal reflection (FTIR). In many studies the assumption of a simple exponential decay of the intensity with film thickness was used. In the present study we highlight that this model does not satisfy the Fresnel equations and thus gives an underestimation of the films. We show that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity. In order to quantitatively validate the FTIR technique, we measured the film thickness of the air gap between a convex lens of known geometry and a flat surface and obtain excellent agreement. Furthermore, we also found that we can accurately measure the elastic deformations of the lens under loads by comparing them with the results of the Herzian theory.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 27%
Student > Bachelor 4 9%
Professor > Associate Professor 4 9%
Researcher 3 7%
Student > Master 3 7%
Other 4 9%
Unknown 14 32%
Readers by discipline Count As %
Engineering 12 27%
Physics and Astronomy 10 23%
Energy 1 2%
Materials Science 1 2%
Chemistry 1 2%
Other 0 0%
Unknown 19 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2017.
All research outputs
#4,337,324
of 23,498,099 outputs
Outputs from The European Physical Journal E
#138
of 650 outputs
Outputs of similar age
#74,955
of 311,819 outputs
Outputs of similar age from The European Physical Journal E
#4
of 10 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 650 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,819 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.