↓ Skip to main content

Autophagy Activation Alleviates Amyloid-β-Induced Oxidative Stress, Apoptosis and Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells

Overview of attention for article published in Neurotoxicity Research, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Autophagy Activation Alleviates Amyloid-β-Induced Oxidative Stress, Apoptosis and Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells
Published in
Neurotoxicity Research, May 2017
DOI 10.1007/s12640-017-9746-5
Pubmed ID
Authors

Abhishek Kumar Singh, Akalabya Bissoyi, Mahendra Pratap Kashyap, Pradeep Kumar Patra, Syed Ibrahim Rizvi

Abstract

Autophagy is an evolutionary conserved catabolic process that ensures continuous removal of damaged cell organelles and long-lived protein aggregates to maintain cellular homeostasis. Although autophagy has been implicated in amyloid-β (Aβ) production and deposition, its role in pathogenesis of Alzheimer's disease remains elusive. Thus, the present study was undertaken to assess the cytoprotective and neuroprotective potential of autophagy on Aβ-induced oxidative stress, apoptosis and neurotoxicity in human neuroblastoma SH-SY5Y cells. The treatment of Aβ1-42 impaired the cell growth and redox balance, and induced apoptosis and neurotoxicity in SH-SY5Y cells. Next, the treatment of rapamycin (RAP) significantly elevated the expression of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), sequestosome-1/p62, Beclin-1, and unc-51-like kinase-1 (ULK1) in SH-SY5Y cells. RAP-induced activation of autophagy notably alleviated the Aβ1-42-induced impairment of redox balance by decreasing the levels of pro-oxidants such as reactive oxygen species, lipid peroxidation and Ca(2+) influx, and concurrently increasing the levels of antioxidant enzymes such as superoxide dismutase and catalase. The RAP-induced autophagy also ameliorated Aβ1-42-induced loss of mitochondrial membrane potential and apoptosis. Additionally, the activated autophagy provided significant neuroprotection against Aβ1-42-induced neurotoxicity by elevating the expression of neuronal markers such as synapsin-I, PSD95, NCAM, and CREB. However, 3-methyladenine treatment significantly exacerbated the neurotoxic effects of Aβ1-42. Taken together, our study demonstrated that the activation of autophagy provided possible neuroprotection against Aβ-induced cytotoxicity, oxidative stress, apoptosis, and neurotoxicity in SH-SY5Y neuronal cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Greece 1 2%
Unknown 46 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 19%
Student > Bachelor 6 13%
Unspecified 5 11%
Researcher 5 11%
Student > Master 4 9%
Other 6 13%
Unknown 12 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 15%
Agricultural and Biological Sciences 6 13%
Unspecified 5 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Neuroscience 3 6%
Other 7 15%
Unknown 16 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2017.
All research outputs
#2,901,194
of 23,318,744 outputs
Outputs from Neurotoxicity Research
#89
of 892 outputs
Outputs of similar age
#54,189
of 311,420 outputs
Outputs of similar age from Neurotoxicity Research
#4
of 31 outputs
Altmetric has tracked 23,318,744 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 892 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,420 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.