↓ Skip to main content

Research in Computational Molecular Biology

Overview of attention for book
Cover of 'Research in Computational Molecular Biology'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Boosting Alignment Accuracy by Adaptive Local Realignment
  3. Altmetric Badge
    Chapter 2 A Concurrent Subtractive Assembly Approach for Identification of Disease Associated Sub-metagenomes
  4. Altmetric Badge
    Chapter 3 A Flow Procedure for the Linearization of Genome Sequence Graphs
  5. Altmetric Badge
    Chapter 4 Dynamic Alignment-Free and Reference-Free Read Compression
  6. Altmetric Badge
    Chapter 5 A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases
  7. Altmetric Badge
    Chapter 6 Determining the Consistency of Resolved Triplets and Fan Triplets
  8. Altmetric Badge
    Chapter 7 Progressive Calibration and Averaging for Tandem Mass Spectrometry Statistical Confidence Estimation: Why Settle for a Single Decoy?
  9. Altmetric Badge
    Chapter 8 Resolving Multicopy Duplications de novo Using Polyploid Phasing
  10. Altmetric Badge
    Chapter 9 A Bayesian Active Learning Experimental Design for Inferring Signaling Networks
  11. Altmetric Badge
    Chapter 10 $$BBK^*$$ (Branch and Bound over $$K^*$$ ): A Provable and Efficient Ensemble-Based Algorithm to Optimize Stability and Binding Affinity over Large Sequence Spaces
  12. Altmetric Badge
    Chapter 11 Superbubbles, Ultrabubbles and Cacti
  13. Altmetric Badge
    Chapter 12 EPR-Dictionaries: A Practical and Fast Data Structure for Constant Time Searches in Unidirectional and Bidirectional FM Indices
  14. Altmetric Badge
    Chapter 13 A Bayesian Framework for Estimating Cell Type Composition from DNA Methylation Without the Need for Methylation Reference
  15. Altmetric Badge
    Chapter 14 Towards Recovering Allele-Specific Cancer Genome Graphs
  16. Altmetric Badge
    Chapter 15 Using Stochastic Approximation Techniques to Efficiently Construct Confidence Intervals for Heritability
  17. Altmetric Badge
    Chapter 16 Improved Search of Large Transcriptomic Sequencing Databases Using Split Sequence Bloom Trees
  18. Altmetric Badge
    Chapter 17 AllSome Sequence Bloom Trees
  19. Altmetric Badge
    Chapter 18 Longitudinal Genotype-Phenotype Association Study via Temporal Structure Auto-learning Predictive Model
  20. Altmetric Badge
    Chapter 19 Improving Imputation Accuracy by Inferring Causal Variants in Genetic Studies
  21. Altmetric Badge
    Chapter 20 The Copy-Number Tree Mixture Deconvolution Problem and Applications to Multi-sample Bulk Sequencing Tumor Data
  22. Altmetric Badge
    Chapter 21 Quantifying the Impact of Non-coding Variants on Transcription Factor-DNA Binding
  23. Altmetric Badge
    Chapter 22 aBayesQR: A Bayesian Method for Reconstruction of Viral Populations Characterized by Low Diversity
Attention for Chapter 7: Progressive Calibration and Averaging for Tandem Mass Spectrometry Statistical Confidence Estimation: Why Settle for a Single Decoy?
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Progressive Calibration and Averaging for Tandem Mass Spectrometry Statistical Confidence Estimation: Why Settle for a Single Decoy?
Chapter number 7
Book title
Research in Computational Molecular Biology
Published in
Research in computational molecular biology : ... Annual International Conference, RECOMB ... : proceedings. RECOMB (Conference : 2005-), May 2017
DOI 10.1007/978-3-319-56970-3_7
Pubmed ID
Book ISBNs
978-3-31-956969-7, 978-3-31-956970-3
Authors

Uri Keich, William Stafford Noble

Abstract

Estimating the false discovery rate (FDR) among a list of tandem mass spectrum identifications is mostly done through target-decoy competition (TDC). Here we offer two new methods that can use an arbitrarily small number of additional randomly drawn decoy databases to improve TDC. Specifically, "Partial Calibration" utilizes a new meta-scoring scheme that allows us to gradually benefit from the increase in the number of identifications calibration yields and "Averaged TDC" (a-TDC) reduces the liberal bias of TDC for small FDR values and its variability throughout. Combining a-TDC with "Progressive Calibration" (PC), which attempts to find the "right" number of decoys required for calibration we see substantial impact in real datasets: when analyzing the Plasmodium falciparum data it typically yields almost the entire 17% increase in discoveries that "full calibration" yields (at FDR level 0.05) using 60 times fewer decoys. Our methods are further validated using a novel realistic simulation scheme and importantly, they apply more generally to the problem of controlling the FDR among discoveries from searching an incomplete database.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 25%
Other 2 17%
Student > Master 2 17%
Student > Bachelor 2 17%
Student > Doctoral Student 1 8%
Other 1 8%
Unknown 1 8%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 25%
Agricultural and Biological Sciences 2 17%
Chemical Engineering 1 8%
Mathematics 1 8%
Unspecified 1 8%
Other 2 17%
Unknown 2 17%