↓ Skip to main content

Neuroepigenomics in Aging and Disease

Overview of attention for book
Cover of 'Neuroepigenomics in Aging and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome
  3. Altmetric Badge
    Chapter 2 The Role of Noncoding RNAs in Neurodevelopmental Disorders: The Case of Rett Syndrome
  4. Altmetric Badge
    Chapter 3 Rubinstein-Taybi Syndrome and Epigenetic Alterations
  5. Altmetric Badge
    Chapter 4 Epigenetics of Autism Spectrum Disorder
  6. Altmetric Badge
    Chapter 5 Eating Disorders and Epigenetics
  7. Altmetric Badge
    Chapter 6 Drug Addiction and DNA Modifications
  8. Altmetric Badge
    Chapter 7 Drug Addiction and Histone Code Alterations
  9. Altmetric Badge
    Chapter 8 Anxiety and Epigenetics
  10. Altmetric Badge
    Chapter 9 Histone Modifications in Major Depressive Disorder and Related Rodent Models
  11. Altmetric Badge
    Chapter 10 DNA Methylation in Major Depressive Disorder
  12. Altmetric Badge
    Chapter 11 Noncoding RNAs in Depression
  13. Altmetric Badge
    Chapter 12 DNA Methylation in Schizophrenia
  14. Altmetric Badge
    Chapter 13 Histone Posttranslational Modifications in Schizophrenia
  15. Altmetric Badge
    Chapter 14 Epigenetic Mechanisms of Gene Regulation in Amyotrophic Lateral Sclerosis
  16. Altmetric Badge
    Chapter 15 Epigenetics of Huntington’s Disease
  17. Altmetric Badge
    Chapter 16 DNA Modifications and Alzheimer’s Disease
  18. Altmetric Badge
    Chapter 17 Alzheimer’s Disease and Histone Code Alterations
  19. Altmetric Badge
    Chapter 18 Alzheimer’s Disease and ncRNAs
  20. Altmetric Badge
    Chapter 19 Epigenetics in Parkinson’s Disease
  21. Altmetric Badge
    Chapter 20 Single-Cell Genomics Unravels Brain Cell-Type Complexity
  22. Altmetric Badge
    Chapter 21 Epigenome Editing in the Brain
  23. Altmetric Badge
    Chapter 22 Techniques for Single-Molecule mRNA Imaging in Living Cells
  24. Altmetric Badge
    Chapter 23 Stem Cell Technology for (Epi)genetic Brain Disorders
  25. Altmetric Badge
    Chapter 24 Technologies for Deciphering Epigenomic DNA Patterns
  26. Altmetric Badge
    Chapter 25 Bioinformatics Tools for Genome-Wide Epigenetic Research
Attention for Chapter 25: Bioinformatics Tools for Genome-Wide Epigenetic Research
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
13 X users
facebook
1 Facebook page

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
89 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Bioinformatics Tools for Genome-Wide Epigenetic Research
Chapter number 25
Book title
Neuroepigenomics in Aging and Disease
Published in
Advances in experimental medicine and biology, May 2017
DOI 10.1007/978-3-319-53889-1_25
Pubmed ID
Book ISBNs
978-3-31-953888-4, 978-3-31-953889-1
Authors

Angarica, Vladimir Espinosa, del Sol, Antonio, Vladimir Espinosa Angarica Ph.D., Antonio del Sol Ph.D., Vladimir Espinosa Angarica, Antonio del Sol

Editors

Raul Delgado-Morales

Abstract

Epigenetics play a central role in the regulation of many important cellular processes, and dysregulations at the epigenetic level could be the source of serious pathologies, such as neurological disorders affecting brain development, neurodegeneration, and intellectual disability. Despite significant technological advances for epigenetic profiling, there is still a need for a systematic understanding of how epigenetics shapes cellular circuitry, and disease pathogenesis. The development of accurate computational approaches for analyzing complex epigenetic profiles is essential for disentangling the mechanisms underlying cellular development, and the intricate interaction networks determining and sensing chromatin modifications and DNA methylation to control gene expression. In this chapter, we review the recent advances in the field of "computational epigenetics," including computational methods for processing different types of epigenetic data, prediction of chromatin states, and study of protein dynamics. We also discuss how "computational epigenetics" has complemented the fast growth in the generation of epigenetic data for uncovering the main differences and similarities at the epigenetic level between individuals and the mechanisms underlying disease onset and progression.

X Demographics

X Demographics

The data shown below were collected from the profiles of 13 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 89 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 89 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 15 17%
Student > Ph. D. Student 12 13%
Student > Bachelor 9 10%
Researcher 7 8%
Professor 5 6%
Other 13 15%
Unknown 28 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 19 21%
Agricultural and Biological Sciences 13 15%
Neuroscience 8 9%
Medicine and Dentistry 3 3%
Computer Science 3 3%
Other 9 10%
Unknown 34 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 June 2017.
All research outputs
#4,079,964
of 23,577,654 outputs
Outputs from Advances in experimental medicine and biology
#669
of 5,040 outputs
Outputs of similar age
#70,160
of 313,915 outputs
Outputs of similar age from Advances in experimental medicine and biology
#21
of 106 outputs
Altmetric has tracked 23,577,654 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 5,040 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.3. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,915 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.