↓ Skip to main content

Histone demethylases UTX and JMJD3 are required for NKT cell development in mice

Overview of attention for article published in Cell & Bioscience, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Histone demethylases UTX and JMJD3 are required for NKT cell development in mice
Published in
Cell & Bioscience, May 2017
DOI 10.1186/s13578-017-0152-8
Pubmed ID
Authors

Daniel Northrup, Ryoji Yagi, Kairong Cui, William R. Proctor, Chaochen Wang, Katarzyna Placek, Lance R. Pohl, Rongfu Wang, Kai Ge, Jinfang Zhu, Keji Zhao

Abstract

Natural killer (NK)T cells and conventional T cells share phenotypic characteristic however they differ in transcription factor requirements and functional properties. The role of histone modifying enzymes in conventional T cell development has been extensively studied, little is known about the function of enzymes regulating histone methylation in NKT cells. We show that conditional deletion of histone demethylases UTX and JMJD3 by CD4-Cre leads to near complete loss of liver NKT cells, while conventional T cells are less affected. Loss of NKT cells is cell intrinsic and not due to an insufficient selection environment. The absence of NKT cells in UTX/JMJD3-deficient mice protects mice from concanavalin A-induced liver injury, a model of NKT-mediated hepatitis. GO-analysis of RNA-seq data indicates that cell cycle genes are downregulated in UTX/JMJD3-deleted NKT progenitors, and suggest that failed expansion may account for some of the cellular deficiency. The phenotype appears to be demethylase-dependent, because UTY, a homolog of UTX that lacks catalytic function, is not sufficient to restore their development and removal of H3K27me3 by deletion of EZH2 partially rescues the defect. NKT cell development and gene expression is sensitive to proper regulation of H3K27 methylation. The H3K27me3 demethylase enzymes, in particular UTX, promote NKT cell development, and are required for effective NKT function.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 15%
Student > Doctoral Student 6 15%
Student > Master 5 12%
Student > Postgraduate 4 10%
Researcher 4 10%
Other 6 15%
Unknown 10 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 27%
Immunology and Microbiology 8 20%
Medicine and Dentistry 6 15%
Agricultural and Biological Sciences 3 7%
Unspecified 1 2%
Other 1 2%
Unknown 11 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2017.
All research outputs
#15,459,782
of 22,973,051 outputs
Outputs from Cell & Bioscience
#409
of 942 outputs
Outputs of similar age
#196,861
of 313,742 outputs
Outputs of similar age from Cell & Bioscience
#6
of 11 outputs
Altmetric has tracked 22,973,051 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 942 research outputs from this source. They receive a mean Attention Score of 3.7. This one is in the 49th percentile – i.e., 49% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,742 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.