↓ Skip to main content

Identification of putative olfactory G-protein coupled receptors in Crown-of-Thorns starfish, Acanthaster planci

Overview of attention for article published in BMC Genomics, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
32 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of putative olfactory G-protein coupled receptors in Crown-of-Thorns starfish, Acanthaster planci
Published in
BMC Genomics, May 2017
DOI 10.1186/s12864-017-3793-4
Pubmed ID
Authors

Rebecca E. Roberts, Cherie A. Motti, Kenneth W. Baughman, Noriyuki Satoh, Michael R. Hall, Scott F. Cummins

Abstract

In marine organisms, and in particular for benthic invertebrates including echinoderms, olfaction is a dominant sense with chemosensation being a critical signalling process. Until recently natural product chemistry was the primary investigative approach to elucidate the nature of chemical signals but advances in genomics and transcriptomics over the last decade have facilitated breakthroughs in understanding not only the chemistry but also the molecular mechanisms underpinning chemosensation in aquatic environments. Integration of these approaches has the potential to reveal the fundamental elements influencing community structure of benthic ecosystems as chemical signalling modulates intra- and inter-species interactions. Such knowledge also offers avenues for potential development of novel biological control methods for pest species such as the predatory Crown-of-Thorns starfish (COTS), Acanthaster planci which are the primary biological cause of coral cover loss in the Indo-Pacific. In this study, we have analysed the COTS sensory organs through histological and electron microscopy. We then investigated key elements of the COTS molecular olfactory toolkit, the putative olfactory rhodopsin-like G protein-protein receptors (GPCRs) within its genome and olfactory organ transcriptomes. Many of the identified Acanthaster planci olfactory receptors (ApORs) genes were found to cluster within the COTS genome, indicating rapid evolution and replication from an ancestral olfactory GPCR sequence. Tube feet and terminal sensory tentacles contain the highest proportion of ApORs. In situ hybridisation confirmed the presence of four ApORs, ApOR15, 18, 25 and 43 within COTS sensory organs, however expression of these genes was not specific to the adhesive epidermis, but also within the nerve plexus of tube feet stems and within the myomesothelium. G alpha subunit proteins were also identified in the sensory organs, and we report the spatial localisation of Gαi within the tube foot and sensory tentacle. We have identified putative COTS olfactory receptors that localise to sensory organs. These results provide a basis for future studies that may enable the development of a biological control not only for COTS, but also other native pest or invasive starfish.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 25%
Researcher 6 19%
Student > Ph. D. Student 4 13%
Student > Master 3 9%
Professor 1 3%
Other 2 6%
Unknown 8 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 28%
Agricultural and Biological Sciences 8 25%
Environmental Science 3 9%
Neuroscience 3 9%
Chemistry 1 3%
Other 0 0%
Unknown 8 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 September 2017.
All research outputs
#15,557,505
of 23,881,329 outputs
Outputs from BMC Genomics
#6,304
of 10,793 outputs
Outputs of similar age
#189,980
of 315,593 outputs
Outputs of similar age from BMC Genomics
#136
of 217 outputs
Altmetric has tracked 23,881,329 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,793 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,593 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 217 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.