↓ Skip to main content

Rice Bran Metabolome Contains Amino Acids, Vitamins

Overview of attention for article published in Rice, June 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#2 of 407)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
18 news outlets
blogs
1 blog
twitter
2 X users
video
2 YouTube creators

Readers on

mendeley
134 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rice Bran Metabolome Contains Amino Acids, Vitamins & Cofactors, and Phytochemicals with Medicinal and Nutritional Properties
Published in
Rice, June 2017
DOI 10.1186/s12284-017-0157-2
Pubmed ID
Authors

Iman Zarei, Dustin G. Brown, Nora Jean Nealon, Elizabeth P. Ryan

Abstract

Rice bran is a functional food that has shown protection against major chronic diseases (e.g. obesity, diabetes, cardiovascular disease and cancer) in animals and humans, and these health effects have been associated with the presence of bioactive phytochemicals. Food metabolomics uses multiple chromatography and mass spectrometry platforms to detect and identify a diverse range of small molecules with high sensitivity and precision, and has not been completed for rice bran. This study utilized global, non-targeted metabolomics to identify small molecules in rice bran, and conducted a comprehensive search of peer-reviewed literature to determine bioactive compounds. Three U.S. rice varieties (Calrose, Dixiebelle, and Neptune), that have been used for human dietary intervention trials, were assessed herein for bioactive compounds that have disease control and prevention properties. The profiling of rice bran by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) identified 453 distinct phytochemicals, 209 of which were classified as amino acids, cofactors & vitamins, and secondary metabolites, and were further assessed for bioactivity. A scientific literature search revealed 65 compounds with health properties, 16 of which had not been previously identified in rice bran. This suite of amino acids, cofactors & vitamins, and secondary metabolites comprised 46% of the identified rice bran metabolome, which substantially enhanced our knowledge of health-promoting rice bran compounds provided during dietary supplementation. Rice bran metabolite profiling revealed a suite of biochemical molecules that can be further investigated and exploited for multiple nutritional therapies and medical food applications. These bioactive compounds may also be biomarkers of dietary rice bran intake. The medicinal compounds associated with rice bran can function as a network across metabolic pathways and this metabolite network may occur via additive and synergistic effects between compounds in the food matrix.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 134 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 134 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 9%
Student > Bachelor 12 9%
Researcher 10 7%
Student > Ph. D. Student 9 7%
Student > Doctoral Student 5 4%
Other 20 15%
Unknown 66 49%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 10%
Agricultural and Biological Sciences 14 10%
Nursing and Health Professions 8 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 3%
Chemistry 4 3%
Other 19 14%
Unknown 71 53%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 136. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 June 2023.
All research outputs
#287,633
of 24,417,958 outputs
Outputs from Rice
#2
of 407 outputs
Outputs of similar age
#6,287
of 321,335 outputs
Outputs of similar age from Rice
#2
of 14 outputs
Altmetric has tracked 24,417,958 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 407 research outputs from this source. They receive a mean Attention Score of 3.9. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 321,335 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.