↓ Skip to main content

Optimization of sampling strategy to determine pathogen removal efficacy of activated sludge treatment plant

Overview of attention for article published in Environmental Science & Pollution Research, June 2017
Altmetric Badge


4 Dimensions

Readers on

17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Optimization of sampling strategy to determine pathogen removal efficacy of activated sludge treatment plant
Published in
Environmental Science & Pollution Research, June 2017
DOI 10.1007/s11356-017-9557-5
Pubmed ID

Sidhu, Jatinder P. S., Ahmed, Warish, Palmer, Andrew, Smith, Kylie, Hodgers, Leonie, Toze, Simon


Large-scale wastewater schemes rely on multi-barrier approach for the production of safe and sustainable recycled water. In multi-barrier wastewater reclamation systems, conventional activated sludge process (ASP) often constitutes a major initial treatment step. The main aim of this research was to determine most appropriate sampling approach to establish pathogen removal efficacy of ASP. The results suggest that ASP is capable of reducing human adenovirus (HAdV) and polyomavirus (HPyV) by up to 3 log10. The virus removal data suggests that HAdV removal is comparable to somatic bacteriophage belonging to Microviridae family. Due to the high removal of Escherichia coli (>3 log10) and very poor correlation with the enteric virus, it is not recommended that E. coli be used as a surrogate for enteric virus removal. The results also demonstrated no statistically significant differences (t test, P > 0.05) in calculated log removal values (LRVs) for HAdV, HPyV, and Microviridae from samples collected on hydraulic retention time (HRT) or simultaneous paired samples collected for influent and effluent. This indicates that a more practical approach of simultaneous sampling for influent and effluent could be used to determine pathogen removal efficiency of ASP. The results also suggest that a minimum of 10, preferably 20 samples, are required to fully capture variability in the removal of virus. In order to cover for the potential seasonal prevalence of viruses such as norovirus and rotavirus, sampling should be spread across all seasons.

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 35%
Unspecified 4 24%
Student > Master 2 12%
Student > Ph. D. Student 2 12%
Other 1 6%
Other 2 12%
Readers by discipline Count As %
Unspecified 6 35%
Agricultural and Biological Sciences 4 24%
Environmental Science 3 18%
Earth and Planetary Sciences 1 6%
Social Sciences 1 6%
Other 2 12%