↓ Skip to main content

An “EAR” on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure–Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters

Overview of attention for article published in Environmental Science & Technology, July 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
80 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An “EAR” on Environmental Surveillance and Monitoring: A Case Study on the Use of Exposure–Activity Ratios (EARs) to Prioritize Sites, Chemicals, and Bioactivities of Concern in Great Lakes Waters
Published in
Environmental Science & Technology, July 2017
DOI 10.1021/acs.est.7b01613
Pubmed ID
Authors

Brett R. Blackwell, Gerald T. Ankley, Steven R. Corsi, Laura A. DeCicco, Keith A. Houck, Richard S. Judson, Shibin Li, Matthew T. Martin, Elizabeth Murphy, Anthony L. Schroeder, Edwin R. Smith, Joe Swintek, Daniel L. Villeneuve

Abstract

Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data like the ToxCast database, which contains information for over 9,000 compounds screened through up to 1,100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 18 25%
Researcher 13 18%
Student > Master 4 6%
Professor 3 4%
Student > Bachelor 2 3%
Other 10 14%
Unknown 22 31%
Readers by discipline Count As %
Environmental Science 16 22%
Agricultural and Biological Sciences 12 17%
Biochemistry, Genetics and Molecular Biology 6 8%
Engineering 3 4%
Chemistry 3 4%
Other 3 4%
Unknown 29 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2018.
All research outputs
#6,965,122
of 25,382,440 outputs
Outputs from Environmental Science & Technology
#8,161
of 20,680 outputs
Outputs of similar age
#102,133
of 325,319 outputs
Outputs of similar age from Environmental Science & Technology
#120
of 251 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 72nd percentile.
So far Altmetric has tracked 20,680 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.8. This one has gotten more attention than average, scoring higher than 60% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,319 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 251 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.