↓ Skip to main content

Kinase Signaling Networks

Overview of attention for book
Cover of 'Kinase Signaling Networks'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Optogenetic Control of Ras/Erk Signaling Using the Phy–PIF System
  3. Altmetric Badge
    Chapter 2 Dissecting Kinase Effector Signaling Using the RapRTAP Methodology
  4. Altmetric Badge
    Chapter 3 Single-Cell Imaging of ERK Signaling Using Fluorescent Biosensors
  5. Altmetric Badge
    Chapter 4 Quantification of Cell Signaling Networks Using Kinase Activity Chemosensors
  6. Altmetric Badge
    Chapter 5 Expression of Recombinant Phosphoproteins for Signal Transduction Studies
  7. Altmetric Badge
    Chapter 6 Allosteric Modulation of Src Family Kinases with ATP-Competitive Inhibitors
  8. Altmetric Badge
    Chapter 7 Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay
  9. Altmetric Badge
    Chapter 8 Proteomic Profiling of Protein Kinase Inhibitor Targets by Mass Spectrometry
  10. Altmetric Badge
    Chapter 9 Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification
  11. Altmetric Badge
    Chapter 10 High-Content Imaging and RNAi Screens for Investigating Kinase Network Plasticity
  12. Altmetric Badge
    Chapter 11 Analysis of Drug Resistance Using Kinome-Wide Functional Screens
  13. Altmetric Badge
    Chapter 12 Identification and Validation of Driver Kinases from Next-Generation Sequencing Data
  14. Altmetric Badge
    Chapter 13 Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis
  15. Altmetric Badge
    Chapter 14 Cell-Specific Labeling for Analyzing Bidirectional Signaling by Mass Spectrometry
  16. Altmetric Badge
    Chapter 15 Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics
  17. Altmetric Badge
    Chapter 16 Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines
  18. Altmetric Badge
    Chapter 17 Targeted Analysis of Phosphotyrosine Signaling by Multiple Reaction Monitoring Mass Spectrometry
  19. Altmetric Badge
    Chapter 18 Phosphoproteomic Analysis of Isolated Mitochondria in Yeast
  20. Altmetric Badge
    Chapter 19 A Methodology for Comprehensive Analysis of Toll-Like Receptor Signaling in Macrophages
  21. Altmetric Badge
    Chapter 20 Absolute Phosphorylation Stoichiometry Analysis by Motif-Targeting Quantitative Mass Spectrometry
  22. Altmetric Badge
    Chapter 21 Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics
  23. Altmetric Badge
    Chapter 22 Mass Spectrometry Analysis of Spatial Protein Networks by Colocalization Analysis (COLA)
  24. Altmetric Badge
    Chapter 23 Development of Selected Reaction Monitoring Methods to Systematically Quantify Kinase Abundance and Phosphorylation Stoichiometry in Human Samples
  25. Altmetric Badge
    Chapter 24 Analysis of Signaling Networks at the Single-Cell Level Using Mass Cytometry
  26. Altmetric Badge
    Chapter 25 Magnetic Resonance Spectroscopy (MRS)-Based Methods for Examining Cancer Metabolism in Response to Oncogenic Kinase Drug Treatment
  27. Altmetric Badge
    Chapter 26 Deconstructing the Metabolic Networks of Oncogenic Signaling Using Targeted Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
  28. Altmetric Badge
    Chapter 27 Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols
  29. Altmetric Badge
    Chapter 28 An Interdisciplinary Approach for Designing Kinetic Models of the Ras/MAPK Signaling Pathway
  30. Altmetric Badge
    Chapter 29 Databases and Computational Tools for Evolutionary Analysis of Protein Phosphorylation
  31. Altmetric Badge
    Chapter 30 Informatics Approaches for Predicting, Understanding, and Testing Cancer Drug Combinations
  32. Altmetric Badge
    Chapter 31 Target Inhibition Maps Based on Responses to Kinase Inhibitors
  33. Altmetric Badge
    Chapter 32 Partial Least Squares Regression Models for the Analysis of Kinase Signaling
Attention for Chapter 7: Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay
Altmetric Badge

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay
Chapter number 7
Book title
Kinase Signaling Networks
Published in
Methods in molecular biology, July 2017
DOI 10.1007/978-1-4939-7154-1_7
Pubmed ID
Book ISBNs
978-1-4939-7152-7, 978-1-4939-7154-1
Authors

Isabelle S. Lucet, James M. Murphy, Lucet, Isabelle S., Murphy, James M.

Abstract

The protocol herein describes a robust and proven method for the measurement of pseudokinase-ligand interaction using a fluorescence-based thermal shift assay (TSA). Pseudokinases are kinase-like proteins that have recently emerged as crucial regulatory modules of signal transduction pathways and may well represent a novel class of drug targets. However, unlike kinases, the regulatory activity of pseudokinases is mainly conferred through protein-protein interactions. Understanding the mechanisms that underlie pseudokinase conformational changes through ligand binding and how such conformational changes can tune signaling pathways is a necessary step to unravel their biological functions.Thermal denaturation-based methods have proven to be a powerful method for determining the capacity of purified recombinant pseudokinases to bind ligands and can simultaneously inform on the potential druggability of the nucleotide-binding site. This assay takes advantage of a change in fluorescence arising when the dye, SYPRO Orange, binds to hydrophobic patches that become exposed when a protein undergoes thermal unfolding. Ligand binding to a protein is known to increase its thermal stability, which is reflected by a shift between the thermal denaturation curves of the unliganded protein and the liganded protein. Here, we illustrate the utility of the method with the pseudokinases, ErbB3/HER3, ILK, ROP5Bi, JAK1, JAK2, TYK2, MLKL, STRAD, TRIB1, VRK3, and ROR1. This method can also be used to determine optimal buffer conditions that may increase protein stability and can be tailored to other protein families.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 38%
Student > Bachelor 3 23%
Student > Doctoral Student 1 8%
Student > Master 1 8%
Unknown 3 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 46%
Agricultural and Biological Sciences 3 23%
Chemistry 1 8%
Unknown 3 23%