↓ Skip to main content

Analyzing Personalized Policies for Online Biometric Verification

Overview of attention for article published in PLOS ONE, May 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Analyzing Personalized Policies for Online Biometric Verification
Published in
PLOS ONE, May 2014
DOI 10.1371/journal.pone.0094087
Pubmed ID
Authors

Apaar Sadhwani, Yan Yang, Lawrence M. Wein

Abstract

Motivated by India's nationwide biometric program for social inclusion, we analyze verification (i.e., one-to-one matching) in the case where we possess similarity scores for 10 fingerprints and two irises between a resident's biometric images at enrollment and his biometric images during his first verification. At subsequent verifications, we allow individualized strategies based on these 12 scores: we acquire a subset of the 12 images, get new scores for this subset that quantify the similarity to the corresponding enrollment images, and use the likelihood ratio (i.e., the likelihood of observing these scores if the resident is genuine divided by the corresponding likelihood if the resident is an imposter) to decide whether a resident is genuine or an imposter. We also consider two-stage policies, where additional images are acquired in a second stage if the first-stage results are inconclusive. Using performance data from India's program, we develop a new probabilistic model for the joint distribution of the 12 similarity scores and find near-optimal individualized strategies that minimize the false reject rate (FRR) subject to constraints on the false accept rate (FAR) and mean verification delay for each resident. Our individualized policies achieve the same FRR as a policy that acquires (and optimally fuses) 12 biometrics for each resident, which represents a five (four, respectively) log reduction in FRR relative to fingerprint (iris, respectively) policies previously proposed for India's biometric program. The mean delay is [Formula: see text] sec for our proposed policy, compared to 30 sec for a policy that acquires one fingerprint and 107 sec for a policy that acquires all 12 biometrics. This policy acquires iris scans from 32-41% of residents (depending on the FAR) and acquires an average of 1.3 fingerprints per resident.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 25%
Student > Master 2 25%
Researcher 1 13%
Student > Bachelor 1 13%
Unknown 2 25%
Readers by discipline Count As %
Medicine and Dentistry 2 25%
Biochemistry, Genetics and Molecular Biology 1 13%
Agricultural and Biological Sciences 1 13%
Engineering 1 13%
Unknown 3 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 May 2014.
All research outputs
#18,371,959
of 22,755,127 outputs
Outputs from PLOS ONE
#154,400
of 194,177 outputs
Outputs of similar age
#164,646
of 227,857 outputs
Outputs of similar age from PLOS ONE
#3,670
of 4,875 outputs
Altmetric has tracked 22,755,127 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 194,177 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.1. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 227,857 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4,875 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.