↓ Skip to main content

Cholesterol biosynthesis inhibitor RO 48-8071 reduces progesterone receptor expression and inhibits progestin-dependent stem cell-like cell growth in hormone-dependent human breast cancer cells

Overview of attention for article published in Breast cancer targets and therapy, July 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#5 of 324)
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
10 news outlets

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cholesterol biosynthesis inhibitor RO 48-8071 reduces progesterone receptor expression and inhibits progestin-dependent stem cell-like cell growth in hormone-dependent human breast cancer cells
Published in
Breast cancer targets and therapy, July 2017
DOI 10.2147/bctt.s140265
Pubmed ID
Authors

Yayun Liang, Sandy Goyette, Salman M Hyder

Abstract

Clinical trials and studies have shown that postmenopausal women undergoing combination hormone replacement therapy containing estrogen and progestin have an increased risk of breast cancer compared with women taking estrogen or placebo alone. Using animal models, we have previously shown that synthetic progestins, including medroxyprogesterone acetate (MPA), which is widely used clinically, accelerate breast cancer tumor growth and promote metastasis. Furthermore, we have found that MPA elevates CD44 protein expression and aldehyde dehydrogenase (ALDH) activity, two markers of cancer stem cells (CSCs), and increases mammosphere formation, another hallmark of stem cells, in hormone-dependent T47-D human breast cancer cells. Herein, we show that RO 48-8071 (RO), an inhibitor of cholesterol synthesis, reduced MPA-induced CD44 protein expression in two hormone-dependent human breast cancer cell lines, T47-D and BT-474. Because we have previously shown that MPA induction of CD44 is progesterone receptor (PR) dependent, we examined RO's effects on PR protein and mRNA expressions in T47-D cells. PR mRNA levels remained unchanged after RO treatment; however, RO significantly reduced the protein expression of both PR receptor isoforms, PR-A and PR-B. Using the proteasome inhibitor MG-132, we demonstrated that RO decreases PR protein expression in T47-D cells via the proteasomal degradation pathway. Importantly, treatment of T47-D cells with RO abolished MPA-induced mammosphere formation. Based on our observations, we contend that RO may represent a novel means of preventing MPA-induced CSC expansion. RO could be used clinically to both treat and prevent hormone-dependent breast cancers, which represent the majority of human breast cancers. RO may also have clinical utility in reducing resistance to antihormone therapy.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 40%
Student > Ph. D. Student 1 10%
Lecturer 1 10%
Researcher 1 10%
Unknown 3 30%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 30%
Medicine and Dentistry 2 20%
Immunology and Microbiology 1 10%
Sports and Recreations 1 10%
Unknown 3 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 75. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 July 2017.
All research outputs
#565,440
of 25,382,440 outputs
Outputs from Breast cancer targets and therapy
#5
of 324 outputs
Outputs of similar age
#11,917
of 326,871 outputs
Outputs of similar age from Breast cancer targets and therapy
#1
of 11 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 324 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,871 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.