↓ Skip to main content

Optimisation of chemotherapy and radiotherapy for untreated Hodgkin lymphoma patients with respect to second malignant neoplasms, overall and progression-free survival: individual participant data…

Overview of attention for article published in Cochrane database of systematic reviews, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
4 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Optimisation of chemotherapy and radiotherapy for untreated Hodgkin lymphoma patients with respect to second malignant neoplasms, overall and progression-free survival: individual participant data analysis
Published in
Cochrane database of systematic reviews, September 2017
DOI 10.1002/14651858.cd008814.pub2
Pubmed ID
Authors

Jeremy Franklin, Dennis A. Eichenauer, Ingrid Becker, Ina Monsef, Andreas Engert

Abstract

Efficacy and the risk of severe late effects have to be well-balanced in treatment of Hodgkin lymphoma (HL). Late adverse effects include secondary malignancies which often have a poor prognosis. To synthesise evidence on the risk of secondary malignancies after current treatment approaches comprising chemotherapy and/or radiotherapy, we performed a meta-analysis based on individual patient data (IPD) from patients treated for newly diagnosed HL. We investigated several questions concerning possible changes in the risk of secondary malignancies when modifying chemotherapy or radiotherapy (omission of radiotherapy, reduction of the radiation field, reduction of the radiation dose, use of fewer chemotherapy cycles, intensification of chemotherapy). We also analysed whether these modifications affect progression-free survival (PFS) and overall survival (OS). We searched MEDLINE and Cochrane CENTRAL trials databases comprehensively in June 2010 for all randomised trials in HL since 1984. Key international trials registries were also searched. The search was updated in March 2015 without collecting further IPD (one further eligible study found) and again in July 2017 (no further eligible studies). We included randomised controlled trials (RCTs) for untreated HL patients which enrolled at least 50 patients per arm, completed recruitment by 2007 and performed a treatment comparison relevant to our objectives. Study groups submitted IPD, including age, sex, stage and the outcomes secondary malignant neoplasm (SMN), OS and PFS as time-to-event data. We meta-analysed these data using Petos method (SMN) and Cox regression with inverse-variance pooling (OS, PFS) for each of the five study questions, and performed subgroup and sensitivity analyses to assess the applicability and robustness of the results. We identified 21 eligible trials and obtained IPD for 16. For four studies no data were supplied despite repeated efforts, while one study was only identified in 2015 and IPD were not sought. For each study question, between three and six trials with between 1101 and 2996 participants in total and median follow-up between 6.7 and 10.8 years were analysed. All participants were adults and mainly under 60 years. Risk of bias was assessed as low for the majority of studies and outcomes. Chemotherapy alone versus same chemotherapy plus radiotherapy. Omitting additional radiotherapy probably reduces secondary malignancy incidence (Peto odds ratio (OR) 0.43, 95% confidence interval (CI) 0.23 to 0.82, low quality of evidence), corresponding to an estimated reduction of eight-year SMN risk from 8% to 4%. This decrease was particularly true for secondary acute leukemias. However, we had insufficient evidence to determine whether OS rates differ between patients treated with chemotherapy alone versus combined-modality (hazard ratio (HR) 0.71, 95% CI 0.46 to 1.11, moderate quality of evidence). There was a slightly higher rate of PFS with combined modality, but our confidence in the results was limited by high levels of statistical heterogeneity between studies (HR 1.31, 95% CI 0.99 to 1.73, moderate quality of evidence). Chemotherapy plus involved-field radiation versus same chemotherapy plus extended-field radiation (early stages) . There is insufficient evidence to determine whether smaller radiation field reduces SMN risk (Peto OR 0.86, 95% CI 0.64 to 1.16, low quality of evidence), OS (HR 0.89, 95% C: 0.70 to 1.12, high quality of evidence) or PFS (HR 0.99, 95% CI 0.81 to 1.21, high quality of evidence). Chemotherapy plus lower-dose radiation versus same chemotherapy plus higher-dose radiation (early stages). There is insufficient evidence to determine the effect of lower-radiation dose on SMN risk (Peto OR 1.03, 95% CI 0.71 to 1.50, low quality of evidence), OS (HR 0.91, 95% CI 0.65 to 1.28, high quality of evidence) or PFS (HR 1.20, 95% CI 0.97 to 1.48, high quality of evidence). Fewer versus more courses of chemotherapy (each with or without radiotherapy; early stages). Fewer chemotherapy courses probably has little or no effect on SMN risk (Peto OR 1.10, 95% CI 0.74 to 1.62), OS (HR 0.99, 95% CI 0.73 to1.34) or PFS (HR 1.15, 95% CI 0.91 to 1.45).Outcomes had a moderate (SMN) or high (OS, PFS) quality of evidence. Dose-intensified versus ABVD-like chemotherapy (with or without radiotherapy in each case). In the mainly advanced-stage patients who were treated with intensified chemotherapy, the rate of secondary malignancies was low. There was insufficient evidence to determine the effect of chemotherapy intensification (Peto OR 1.37, CI 0.89 to 2.10, low quality of evidence). The rate of secondary acute leukemias (and for younger patients, all secondary malignancies) was probably higher than among those who had treatment with standard-dose ABVD-like protocols. In contrast, the intensified chemotherapy protocols probably improved PFS (eight-year PFS 75% versus 69% for ABVD-like treatment, HR 0.82, 95% CI 0.7 to 0.95, moderate quality of evidence). Evidence suggesting improved survival with intensified chemotherapy was not conclusive (HR: 0.85, CI 0.70 to 1.04), although escalated-dose BEACOPP appeared to lengthen survival compared to ABVD-like chemotherapy (HR 0.58, 95% CI 0.43 to 0.79, moderate quality of evidence).Generally, we could draw valid conclusions only in terms of secondary haematological malignancies, which usually occur less than 10 years after initial treatment, while follow-up within the present analysis was too short to record all solid tumours. The risk of secondary acute myeloid leukaemia and myelodysplastic syndrome (AML/MDS) is increased but efficacy is improved among patients treated with intensified chemotherapy protocols. Treatment decisions must be tailored for individual patients. Consolidating radiotherapy is associated with an increased rate of secondary malignancies; therefore it appears important to define which patients can safely be treated without radiotherapy after chemotherapy, both for early and advanced stages. For early stages, treatment optimisation methods such as use of fewer chemotherapy cycles and reduced field or reduced-dose radiotherapy did not appear to markedly affect efficacy or secondary malignancy risk. Due to the limited amount of long-term follow-up in this meta-analysis, further long-term investigations of late events are needed, particularly with respect to secondary solid tumours. Since many older studies have been included, possible improvement of radiotherapy techniques must be considered when interpreting these results.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 24%
Unspecified 11 19%
Student > Bachelor 7 12%
Researcher 6 10%
Student > Ph. D. Student 6 10%
Other 13 22%
Unknown 1 2%
Readers by discipline Count As %
Medicine and Dentistry 28 48%
Unspecified 12 21%
Nursing and Health Professions 5 9%
Social Sciences 3 5%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 7 12%
Unknown 1 2%

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2018.
All research outputs
#1,363,095
of 13,190,464 outputs
Outputs from Cochrane database of systematic reviews
#3,934
of 10,519 outputs
Outputs of similar age
#43,956
of 267,533 outputs
Outputs of similar age from Cochrane database of systematic reviews
#124
of 241 outputs
Altmetric has tracked 13,190,464 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,533 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 241 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.