↓ Skip to main content

Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes

Overview of attention for article published in Developmental Biology, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes
Published in
Developmental Biology, September 2017
DOI 10.1016/j.ydbio.2017.09.027
Pubmed ID
Authors

Nick Riddiford, Gerhard Schlosser

Abstract

The transcription factor Six1 and its cofactor Eya1 are important regulators of neurogenesis in cranial placodes, activating genes promoting both a progenitor state, such as hes8, and neuronal differentiation, such as neurog1. Here, we use gain and loss of function studies in Xenopus laevis to elucidate how these genes function during placodal neurogenesis. We first establish that hes8 is activated by Notch signaling and represses neurog1 and neuronal differentiation, indicating that it mediates lateral inhibition. Using hes8 knockdown we demonstrate that hes8 is essential for limiting neuronal differentiation during normal placode development. We next show that Six1 and Eya1 cell autonomously activate both hes8 and neurog1 in a dose-dependent fashion, with increasing upregulation at higher doses, while neuronal differentiation is increasingly repressed. However, high doses of Six1 and Eya1 upregulate neurog1 only transiently, whereas low doses of Six1 and Eya1 ultimately promote both neurog1 expression and neuronal differentiation. Finally, we show that Six1 and Eya1 can activate hes8 and arrest neuronal differentiation even when Notch signaling is blocked. Our findings indicate that Six1 and Eya1 can both promote and arrest neuronal differentiation by activating the Notch pathway genes neurog1 and hes8, respectively, revealing a novel mechanism of Six1/Eya1 action during placodal neurogenesis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 19%
Student > Ph. D. Student 6 19%
Researcher 5 16%
Student > Bachelor 5 16%
Student > Postgraduate 2 6%
Other 2 6%
Unknown 6 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 34%
Agricultural and Biological Sciences 10 31%
Medicine and Dentistry 2 6%
Decision Sciences 1 3%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 0 0%
Unknown 7 22%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 October 2017.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Developmental Biology
#4,016
of 5,559 outputs
Outputs of similar age
#179,295
of 326,430 outputs
Outputs of similar age from Developmental Biology
#27
of 58 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,559 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,430 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.