↓ Skip to main content

VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization

Overview of attention for article published in BMC Bioinformatics, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization
Published in
BMC Bioinformatics, October 2017
DOI 10.1186/s12859-017-1845-z
Pubmed ID
Authors

Bence Bolgár, Péter Antal

Abstract

Computational fusion approaches to drug-target interaction (DTI) prediction, capable of utilizing multiple sources of background knowledge, were reported to achieve superior predictive performance in multiple studies. Other studies showed that specificities of the DTI task, such as weighting the observations and focusing the side information are also vital for reaching top performance. We present Variational Bayesian Multiple Kernel Logistic Matrix Factorization (VB-MK-LMF), which unifies the advantages of (1) multiple kernel learning, (2) weighted observations, (3) graph Laplacian regularization, and (4) explicit modeling of probabilities of binary drug-target interactions. VB-MK-LMF achieves significantly better predictive performance in standard benchmarks compared to state-of-the-art methods, which can be traced back to multiple factors. The systematic evaluation of the effect of multiple kernels confirm their benefits, but also highlights the limitations of linear kernel combinations, already recognized in other fields. The analysis of the effect of prior kernels using varying sample sizes sheds light on the balance of data and knowledge in DTI tasks and on the rate at which the effect of priors vanishes. This also shows the existence of "small sample size" regions where using side information offers significant gains. Alongside favorable predictive performance, a notable property of MF methods is that they provide a unified space for drugs and targets using latent representations. Compared to earlier studies, the dimensionality of this space proved to be surprisingly low, which makes the latent representations constructed by VB-ML-LMF especially well-suited for visual analytics. The probabilistic nature of the predictions allows the calculation of the expected values of hits in functionally relevant sets, which we demonstrate by predicting drug promiscuity. The variational Bayesian approximation is also implemented for general purpose graphics processing units yielding significantly improved computational time. In standard benchmarks, VB-MK-LMF shows significantly improved predictive performance in a wide range of settings. Beyond these benchmarks, another contribution of our work is highlighting and providing estimates for further pharmaceutically relevant quantities, such as promiscuity, druggability and total number of interactions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 25%
Unspecified 4 10%
Student > Bachelor 4 10%
Researcher 4 10%
Student > Master 3 8%
Other 7 18%
Unknown 8 20%
Readers by discipline Count As %
Computer Science 9 23%
Unspecified 4 10%
Agricultural and Biological Sciences 4 10%
Medicine and Dentistry 3 8%
Biochemistry, Genetics and Molecular Biology 2 5%
Other 8 20%
Unknown 10 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2018.
All research outputs
#15,656,443
of 23,344,526 outputs
Outputs from BMC Bioinformatics
#5,485
of 7,387 outputs
Outputs of similar age
#202,299
of 323,899 outputs
Outputs of similar age from BMC Bioinformatics
#67
of 106 outputs
Altmetric has tracked 23,344,526 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,387 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.5. This one is in the 25th percentile – i.e., 25% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,899 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 106 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.