↓ Skip to main content

Size-Dependent Reactivity of Magnetite Nanoparticles: A Field-Laboratory Comparison

Overview of attention for article published in Environmental Science & Technology, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Size-Dependent Reactivity of Magnetite Nanoparticles: A Field-Laboratory Comparison
Published in
Environmental Science & Technology, September 2014
DOI 10.1021/es500172p
Pubmed ID
Authors

Andrew L. Swindle, Andrew S. Elwood Madden, Isabelle M. Cozzarelli, Mourad Benamara

Abstract

Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼6 nm, ∼44 nm, and ∼90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 3%
Unknown 38 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 33%
Researcher 11 28%
Professor 4 10%
Other 2 5%
Student > Doctoral Student 2 5%
Other 3 8%
Unknown 4 10%
Readers by discipline Count As %
Chemistry 12 31%
Environmental Science 7 18%
Agricultural and Biological Sciences 3 8%
Earth and Planetary Sciences 3 8%
Engineering 3 8%
Other 4 10%
Unknown 7 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 October 2014.
All research outputs
#16,048,318
of 25,377,790 outputs
Outputs from Environmental Science & Technology
#15,949
of 20,675 outputs
Outputs of similar age
#141,087
of 262,426 outputs
Outputs of similar age from Environmental Science & Technology
#167
of 256 outputs
Altmetric has tracked 25,377,790 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 20,675 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 17.8. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,426 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 256 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.