↓ Skip to main content

A Pilot Study: The UNC Passive Aerosol Sampler in a Working Environment

Overview of attention for article published in Annals of Work Exposures and Health, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Pilot Study: The UNC Passive Aerosol Sampler in a Working Environment
Published in
Annals of Work Exposures and Health, August 2017
DOI 10.1093/annweh/wxx067
Pubmed ID
Authors

Mariam Shirdel, Håkan Wingfors, Britt M Andersson, Johan N Sommar, Ingvar A Bergdahl, Ingrid E Liljelind

Abstract

Dust is generally sampled on a filter using air pumps, but passive sampling could be a cost-effective alternative. One promising passive sampler is the University of North Carolina passive aerosol sampler (UNC sampler). The aim of this study is to characterize and compare the UNC sampler's performance with PM10 and PM2.5 impactors in a working environment. Area sampling was carried out at different mining locations using UNC samplers in parallel with PM2.5 and PM10 impactors. Two different collection surfaces, polycarbonate (PC) and carbon tabs (CT), were employed for the UNC sampling. Sampling was carried out for 4-25 hours. The UNC samplers underestimated the concentrations compared to PM10 and PM2.5 impactor data. At the location with the highest aerosol concentration, the time-averaged mean of PC showed 24% and CT 35% of the impactor result for PM2.5. For PM10, it was 39% with PC and 58% with CT. Sample blank values differed between PC and CT. For PM2.5, PC blank values were ~7 times higher than those of CT, but only 1.8 times higher for PM10. The blank variations were larger for PC than for CT. Particle mass concentrations appear to be underestimated by the UNC sampler compared to impactors, more so for PM2.5 than for PM10. CT may be preferred as a collection surface because the blank values were lower and less variable than for PC. Future validations in the working environment should include respirable dust sampling.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 33%
Student > Ph. D. Student 2 17%
Unspecified 1 8%
Student > Bachelor 1 8%
Student > Master 1 8%
Other 0 0%
Unknown 3 25%
Readers by discipline Count As %
Nursing and Health Professions 3 25%
Engineering 2 17%
Environmental Science 1 8%
Chemical Engineering 1 8%
Chemistry 1 8%
Other 1 8%
Unknown 3 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2017.
All research outputs
#13,472,039
of 23,006,268 outputs
Outputs from Annals of Work Exposures and Health
#226
of 439 outputs
Outputs of similar age
#158,768
of 317,440 outputs
Outputs of similar age from Annals of Work Exposures and Health
#9
of 23 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 439 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,440 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.