↓ Skip to main content

Bayesian inference of metal oxide ultrathin film structure based on crystal truncation rod measurements

Overview of attention for article published in Journal of Applied Crystallography (Wiley-Blackwell), October 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • One of the highest-scoring outputs from this source (#3 of 2,774)
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (98th percentile)

Mentioned by

news
9 news outlets
blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bayesian inference of metal oxide ultrathin film structure based on crystal truncation rod measurements
Published in
Journal of Applied Crystallography (Wiley-Blackwell), October 2017
DOI 10.1107/s1600576717013292
Pubmed ID
Authors

Masato Anada, Yoshinori Nakanishi-Ohno, Masato Okada, Tsuyoshi Kimura, Yusuke Wakabayashi

Abstract

Monte Carlo (MC)-based refinement software to analyze the atomic arrangements of perovskite oxide ultrathin films from the crystal truncation rod intensity is developed on the basis of Bayesian inference. The advantages of the MC approach are (i) it is applicable to multi-domain structures, (ii) it provides the posterior probability of structures through Bayes' theorem, which allows one to evaluate the uncertainty of estimated structural parameters, and (iii) one can involve any information provided by other experiments and theories. The simulated annealing procedure efficiently searches for the optimum model owing to its stochastic updates, regardless of the initial values, without being trapped by local optima. The performance of the software is examined with a five-unit-cell-thick LaAlO3 film fabricated on top of SrTiO3. The software successfully found the global optima from an initial model prepared by a small grid search calculation. The standard deviations of the atomic positions derived from a dataset taken at a second-generation synchrotron are ±0.02 Å for metal sites and ±0.03 Å for oxygen sites.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 24%
Student > Bachelor 3 14%
Professor 3 14%
Student > Ph. D. Student 3 14%
Other 2 10%
Other 4 19%
Unknown 1 5%
Readers by discipline Count As %
Materials Science 9 43%
Physics and Astronomy 7 33%
Chemistry 2 10%
Engineering 1 5%
Unknown 2 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 71. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 November 2017.
All research outputs
#599,833
of 25,461,852 outputs
Outputs from Journal of Applied Crystallography (Wiley-Blackwell)
#3
of 2,774 outputs
Outputs of similar age
#12,778
of 338,516 outputs
Outputs of similar age from Journal of Applied Crystallography (Wiley-Blackwell)
#1
of 53 outputs
Altmetric has tracked 25,461,852 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,774 research outputs from this source. They receive a mean Attention Score of 2.6. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 338,516 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 53 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 98% of its contemporaries.