↓ Skip to main content

The Dynamics of Neural Fields on Bounded Domains: An Interface Approach for Dirichlet Boundary Conditions

Overview of attention for article published in The Journal of Mathematical Neuroscience, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The Dynamics of Neural Fields on Bounded Domains: An Interface Approach for Dirichlet Boundary Conditions
Published in
The Journal of Mathematical Neuroscience, October 2017
DOI 10.1186/s13408-017-0054-4
Pubmed ID
Authors

Aytül Gökçe, Daniele Avitabile, Stephen Coombes

Abstract

Continuum neural field equations model the large-scale spatio-temporal dynamics of interacting neurons on a cortical surface. They have been extensively studied, both analytically and numerically, on bounded as well as unbounded domains. Neural field models do not require the specification of boundary conditions. Relatively little attention has been paid to the imposition of neural activity on the boundary, or to its role in inducing patterned states. Here we redress this imbalance by studying neural field models of Amari type (posed on one- and two-dimensional bounded domains) with Dirichlet boundary conditions. The Amari model has a Heaviside nonlinearity that allows for a description of localised solutions of the neural field with an interface dynamics. We show how to generalise this reduced but exact description by deriving a normal velocity rule for an interface that encapsulates boundary effects. The linear stability analysis of localised states in the interface dynamics is used to understand how spatially extended patterns may develop in the absence and presence of boundary conditions. Theoretical results for pattern formation are shown to be in excellent agreement with simulations of the full neural field model. Furthermore, a numerical scheme for the interface dynamics is introduced and used to probe the way in which a Dirichlet boundary condition can limit the growth of labyrinthine structures.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 31%
Student > Ph. D. Student 3 23%
Student > Bachelor 2 15%
Professor 1 8%
Lecturer > Senior Lecturer 1 8%
Other 1 8%
Unknown 1 8%
Readers by discipline Count As %
Physics and Astronomy 3 23%
Computer Science 2 15%
Mathematics 2 15%
Psychology 2 15%
Neuroscience 2 15%
Other 0 0%
Unknown 2 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2018.
All research outputs
#18,574,814
of 23,006,268 outputs
Outputs from The Journal of Mathematical Neuroscience
#56
of 80 outputs
Outputs of similar age
#251,060
of 327,823 outputs
Outputs of similar age from The Journal of Mathematical Neuroscience
#1
of 2 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 80 research outputs from this source. They receive a mean Attention Score of 2.6. This one is in the 13th percentile – i.e., 13% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,823 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them