↓ Skip to main content

Comparing microbiotas in the upper aerodigestive and lower respiratory tracts of lambs

Overview of attention for article published in Microbiome, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
17 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparing microbiotas in the upper aerodigestive and lower respiratory tracts of lambs
Published in
Microbiome, October 2017
DOI 10.1186/s40168-017-0364-5
Pubmed ID
Authors

Laura Glendinning, David Collie, Steven Wright, Kenny M. D. Rutherford, Gerry McLachlan

Abstract

Recently, the importance of the lung microbiota during health and disease has been examined in humans and in small animal models. Whilst sheep have been proposed as an appropriate large animal model for studying the pathophysiology of a number of important human respiratory diseases, it is clearly important to continually define the limits of agreement between these systems as new concepts emerge. In humans, it has recently been established that the lung microbiota is seeded by microbes from the oral cavity. We sought to determine whether the same was true in sheep. We took lung fluid and upper aerodigestive tract (oropharyngeal) swab samples from 40 lambs (7 weeks old). DNA extraction was performed, and the V2-V3 region of the 16S rRNA gene was amplified by PCR then sequenced via Illumina Miseq. Oropharyngeal swabs were either dominated by bacteria commonly associated with the rumen or by bacteria commonly associated with the upper aerodigestive tract. Lung microbiota samples did not resemble either the upper aerodigestive tract samples or reagent-only controls. Some rumen-associated bacteria were found in lung fluids, indicating that inhalation of ruminal bacteria does occur. We also identified several bacteria which were significantly more abundant in lung fluids than in the upper aerodigestive tract swabs, the most predominant of which was classified as Staphylococcus equorum. In contrast to humans, we found that the lung microbiota of lambs is dissimilar to that of the upper aerodigestive tract, and we suggest that this may be related to physiological and anatomical differences between sheep and humans. Understanding the comparative physiology and anatomy underlying differences in lung microbiota between species will provide a foundation upon which to interpret changes associated with disease and/or environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 20%
Student > Bachelor 5 14%
Student > Ph. D. Student 4 11%
Student > Master 4 11%
Student > Doctoral Student 3 9%
Other 5 14%
Unknown 7 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 26%
Medicine and Dentistry 8 23%
Veterinary Science and Veterinary Medicine 3 9%
Environmental Science 2 6%
Biochemistry, Genetics and Molecular Biology 2 6%
Other 4 11%
Unknown 7 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 June 2018.
All research outputs
#2,012,941
of 23,006,268 outputs
Outputs from Microbiome
#817
of 1,455 outputs
Outputs of similar age
#42,591
of 328,360 outputs
Outputs of similar age from Microbiome
#24
of 42 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,455 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 40.4. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,360 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.