↓ Skip to main content

Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment

Overview of attention for article published in Biological Trace Element Research, October 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment
Published in
Biological Trace Element Research, October 2017
DOI 10.1007/s12011-017-1187-8
Pubmed ID
Authors

Tayfun Yazıcı, Gülperi Koçer, Mustafa Nazıroğlu, İshak Suat Övey, Ahmi Öz

Abstract

Increased intracellular free calcium ion (Ca(2+)) concentration induces excessive oxidative stress and apoptosis. Medical procedures such as zoledronic acid (Zol), bevacizumab (Bev), and dexamethasone (Dex) are usually used in the treatment of bone diseases (osteoporosis, Paget's disease, etc.) and to prevent metastasis in the bone although the procedures induce osteonecrosis of the jaw through excessive production of reactive oxygen species (ROS). Recently, we observed regulator roles of selenium (Se) on apoptosis and Ca(2+) entry through transient receptor potential vanilloid 1 (TRPV1) channels in the cancer cell lines. Therefore, Se may modulate Zol, Bev, and Dex-induced oxidative stress and apoptosis through regulation of TRPV1 channel. In the current study, we investigated the protective effects of Se on apoptosis and oxidative stress through TRPV1 in Zol, Bev, and Dex-induced osteoblast-like cell line. We used human osteoblast-like cell line (Saos-2), and the cells were divided into 12 groups as control, Zol, Bev, Dex, Se, Zol+Se, Bev+Se, Dex+Se, Zol+Dex, Zol+Dex+Se, Zol+Bev, and Zol+Bev+Se which were incubated with drugs (Zol, Bev, Dex, and Se) for 24 h. The cytosolic free Ca(2+) concentration was increased by Zol, Bev, Dex, Zol+Bev, and Zol+Dex, although it was reduced by Se treatment. However, Zol, Bev, and Dex-induced increase in apoptosis, caspase 3, caspase 9, poly (ADP-ribose) polymerase 1 expression levels, and intracellular ROS production values in the cells were decreased by Se treatments. In conclusion, we observed that Zol, Bev, and Dex-induced apoptosis, mitochondrial oxidative stress, and calcium signaling are decreased in human osteoblast-like cell line by the Se treatment. Our findings may be relevant to the etiology and treatment of Zol, Bev, and Dex-induced osteonecrosis by Se.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 14%
Student > Master 4 14%
Student > Bachelor 3 11%
Researcher 3 11%
Student > Postgraduate 3 11%
Other 6 21%
Unknown 5 18%
Readers by discipline Count As %
Medicine and Dentistry 8 29%
Biochemistry, Genetics and Molecular Biology 4 14%
Agricultural and Biological Sciences 4 14%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Veterinary Science and Veterinary Medicine 1 4%
Other 3 11%
Unknown 7 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2017.
All research outputs
#20,451,228
of 23,007,053 outputs
Outputs from Biological Trace Element Research
#1,589
of 2,050 outputs
Outputs of similar age
#286,307
of 328,548 outputs
Outputs of similar age from Biological Trace Element Research
#14
of 21 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,050 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,548 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.