↓ Skip to main content

Local termination pattern analysis: a tool for comparing white matter morphology

Overview of attention for article published in Brain Imaging and Behavior, September 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

news
1 news outlet
twitter
1 X user

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Local termination pattern analysis: a tool for comparing white matter morphology
Published in
Brain Imaging and Behavior, September 2013
DOI 10.1007/s11682-013-9254-z
Pubmed ID
Authors

M. Cieslak, S. T. Grafton

Abstract

Disconnections between structures in the brain have long been hypothesized to be the mechanism behind numerous disease states and pathological behavioral phenotypes. Advances in diffusion weighted imaging (DWI) provide an opportunity to study white matter, and therefore brain connectivity, in great detail. DWI-based research assesses white matter at two different scales: voxelwise indexes of anisotropy such as fractional anisotropy (FA) are used to compare small units of tissue and network-based methods compare tractography-based models of whole-brain connectivity. We propose a method called local termination pattern analysis (LTPA) that considers information about both local and global brain connectivity simultaneously. LTPA itemizes the subset of streamlines that pass through a small set of white matter voxels. The "local termination pattern" is a vector defined by counts of these streamlines terminating in pairs of cortical regions. To assess the reliability of our method we applied LTPA exhaustively over white matter voxels to produce complete maps of local termination pattern similarity, based on diffusion spectrum imaging (DSI) data from 11 individuals in triplicate. Here we show that local termination patterns from an individual are highly reproducible across the entire brain. We discuss how LTPA can be deployed into a clinical database and used to characterize white matter morphology differences due to disease, developmental or genetic factors.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Austria 1 2%
Unknown 42 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 32%
Researcher 6 14%
Professor > Associate Professor 4 9%
Student > Doctoral Student 3 7%
Student > Postgraduate 2 5%
Other 7 16%
Unknown 8 18%
Readers by discipline Count As %
Psychology 12 27%
Engineering 7 16%
Neuroscience 5 11%
Agricultural and Biological Sciences 3 7%
Medicine and Dentistry 2 5%
Other 3 7%
Unknown 12 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 March 2015.
All research outputs
#3,114,027
of 22,769,322 outputs
Outputs from Brain Imaging and Behavior
#171
of 1,154 outputs
Outputs of similar age
#28,414
of 196,976 outputs
Outputs of similar age from Brain Imaging and Behavior
#2
of 19 outputs
Altmetric has tracked 22,769,322 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,154 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 196,976 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.