↓ Skip to main content

Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood

Overview of attention for article published in Virology Journal, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

news
1 news outlet
twitter
3 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood
Published in
Virology Journal, November 2017
DOI 10.1186/s12985-017-0880-8
Pubmed ID
Authors

Eric M. Mucker, Christopher Hartmann, Donna Hering, Wendy Giles, David Miller, Robert Fisher, John Huggins

Abstract

In 1980, smallpox disease was eradicated from nature and Variola virus, the etiological agent of smallpox, was confined to two laboratories, one located in Russia (Moscow) later moved to VECTOR (Novosibirsk, Siberia) and one in the United States (CDC Atlanta). Vaccinations among the general public ceased shortly after the successful eradication campaign, resulting in an increasingly immunologically susceptible population. Because of the possibility of intentional reintroduction of Variola virus and the emergence of other pathogenic poxviruses, there is a great need for the development of medical countermeasures to treat poxvirus disease. It is highly likely that the U.S. FDA "animal rule" will be necessary for regulatory approval of these interventions. Therefore, relevant animal models and the associated supporting assays will require development to stand up to regulatory scrutiny. An optimized real time PCR assay for the detection of orthopoxviruses has been developed by researchers at the United States Army Research Institute of Infectious Diseases (USAMRIID). To support animal studies that will be used to support approval of medical countermeasures by the U.S. FDA, the assay was designed to quantitate poxvirus genomic DNA in a nonhuman primate (cynomolgus macaque) blood matrix as a measurement of viremia. This manuscript describes the validation of the process, including DNA extraction from whole blood anticoagulated with EDTA, for obtaining and quantitating monkeypox genomes by evaluating precision, accuracy, the standard curve, specificity, robustness and stability of the assay and/or components of the assay. The assay had a lower limit of quantitation of 50 genome copies/5 uL sample, upper limit of quantitation of 5 × 10(7) GC/5uL sample and a limit of detection of 2.5 genome copies /5uL sample. The assay was specific for orthopoxvirus. Matrix effects were detected and suggest the presence of PCR inhibitor(s) that was co-extracted with the target DNA. The assay has been validated for the purpose of quantitating monkeypox viral load in blood from cynomolgus macaques. This assay has and will continue to support submissions to the FDA for approval of antiviral therapeutics for smallpox.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 27%
Student > Master 3 9%
Student > Bachelor 2 6%
Student > Ph. D. Student 2 6%
Professor > Associate Professor 2 6%
Other 4 12%
Unknown 11 33%
Readers by discipline Count As %
Medicine and Dentistry 6 18%
Biochemistry, Genetics and Molecular Biology 4 12%
Agricultural and Biological Sciences 4 12%
Immunology and Microbiology 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Other 1 3%
Unknown 13 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 June 2022.
All research outputs
#2,731,479
of 23,924,386 outputs
Outputs from Virology Journal
#237
of 3,153 outputs
Outputs of similar age
#52,844
of 332,140 outputs
Outputs of similar age from Virology Journal
#5
of 40 outputs
Altmetric has tracked 23,924,386 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,153 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.5. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,140 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.