↓ Skip to main content

Devices for preventing percutaneous exposure injuries caused by needles in healthcare personnel

Overview of attention for article published in Cochrane database of systematic reviews, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
15 tweeters
facebook
3 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
153 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Devices for preventing percutaneous exposure injuries caused by needles in healthcare personnel
Published in
Cochrane database of systematic reviews, November 2017
DOI 10.1002/14651858.cd009740.pub3
Pubmed ID
Authors

Viraj K Reddy, Marie-Claude Lavoie, Jos H Verbeek, Manisha Pahwa

Abstract

Percutaneous exposure injuries from devices used for blood collection or for injections expose healthcare workers to the risk of blood borne infections such as hepatitis B and C, and human immunodeficiency virus (HIV). Safety features such as shields or retractable needles can possibly contribute to the prevention of these injuries and it is important to evaluate their effectiveness. To determine the benefits and harms of safety medical devices aiming to prevent percutaneous exposure injuries caused by needles in healthcare personnel versus no intervention or alternative interventions. We searched CENTRAL, MEDLINE, EMBASE, NHSEED, Science Citation Index Expanded, CINAHL, Nioshtic, CISdoc and PsycINFO (until 11 November 2016). We included randomised controlled trials (RCT), controlled before and after studies (CBA) and interrupted time-series (ITS) designs of the effect of safety engineered medical devices on percutaneous exposure injuries in healthcare staff. Two of the authors independently assessed study eligibility and risk of bias and extracted data. We synthesized study results with a fixed-effect or random-effects model meta-analysis where appropriate. We included six RCTs with 1838 participants, two cluster-RCTs with 795 participants and 73,454 patient days, five CBAs with approximately 22,000 participants and eleven ITS with an average of 13.8 data points. These studies evaluated safe modifications of blood collection systems, intravenous (IV) systems, injection systems, multiple devices, sharps containers and legislation on the implementation of safe devices. We estimated the needlestick injury (NSI) rate in the control groups to be about one to five NSIs per 1000 person-years. There were only two studies from low- or middle-income countries. The risk of bias was high in 20 of 24 studies. Safe blood collection systems:We found one RCT that found a safety engineered blood gas syringe having no considerable effect on NSIs (Relative Risk (RR) 0.2, 95% Confidence Interval (95% CI) 0.01 to 4.14, 550 patients, very low quality evidence). In one ITS study, safe blood collection systems decreased NSIs immediately after the introduction (effect size (ES) -6.9, 95% CI -9.5 to -4.2) but there was no further decrease over time (ES -1.2, 95% CI -2.5 to 0.1, very low quality evidence). Another ITS study evaluated an outdated recapping shield, which we did not consider further. Safe Intravenous systemsThere was very low quality evidence in two ITS studies that NSIs were reduced with the introduction of safe IV devices, whereas one RCT and one CBA study provided very low quality evidence of no effect. However, there was moderate quality evidence produced by four other RCT studies that these devices increased the number of blood splashes when the safety system had to be engaged actively (relative risk (RR) 1.6, 95% CI 1.08 to 2.36). In contrast there was low quality evidence produced by two RCTs of passive systems that showed no effect on blood splashes. Yet another RCT produced low quality evidence that a different safe active IV system also decreased the incidence of blood leakages. Safe injection devicesThere was very low quality evidence provided by one RCT and one CBA study showing that introduction of safe injection devices did not considerably change the NSI rate. One ITS study produced low quality evidence showing that the introduction of safe passive injection systems had no effect on NSI rate when compared to safe active injection systems. Multiple safe devicesThere was very low quality evidence from one CBA study and two ITS studies. According to the CBA study, the introduction of multiple safe devices resulted in a decrease in NSI,whereas the two ITS studies found no change. Safety containersOne CBA study produced very low quality evidence showing that the introduction of safety containers decreased NSI. However, two ITS studies evaluating the same intervention found inconsistent results. LegislationThere was low to moderate quality evidence in two ITS studies that introduction of legislation on the use of safety-engineered devices reduced the rate of NSIs among healthcare workers. There was also low quality evidence which showed a decrease in the trend over time for NSI rates.Twenty out of 24 studies had a high risk of bias and the lack of evidence of a beneficial effect could be due to both confounding and bias. This does not mean that these devices are not effective. For safe blood collection systems, we found very low quality evidence of inconsistent effects on NSIs. For safe passive intravenous systems, we found very low quality evidence of a decrease in NSI and a reduction in the incidence of blood leakage events but moderate quality evidence that active systems may increase exposure to blood. For safe injection needles, the introduction of multiple safety devices or the introduction of sharps containers the evidence was inconsistent or there was no clear evidence of a benefit. There was low to moderate quality evidence that introduction of legislation probably reduces NSI rates.More high-quality cluster-randomised controlled studies that include cost-effectiveness measures are needed, especially in countries where both NSIs and blood-borne infections are highly prevalent.

Twitter Demographics

The data shown below were collected from the profiles of 15 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 153 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 153 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 30 20%
Student > Ph. D. Student 24 16%
Researcher 19 12%
Student > Bachelor 16 10%
Student > Postgraduate 15 10%
Other 28 18%
Unknown 21 14%
Readers by discipline Count As %
Medicine and Dentistry 45 29%
Nursing and Health Professions 30 20%
Agricultural and Biological Sciences 6 4%
Psychology 5 3%
Social Sciences 4 3%
Other 26 17%
Unknown 37 24%

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 March 2019.
All research outputs
#1,390,804
of 14,561,944 outputs
Outputs from Cochrane database of systematic reviews
#3,887
of 10,999 outputs
Outputs of similar age
#46,945
of 315,634 outputs
Outputs of similar age from Cochrane database of systematic reviews
#110
of 240 outputs
Altmetric has tracked 14,561,944 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,999 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.2. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,634 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 240 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.