↓ Skip to main content

Novel functions of LHX2 and PAX6 in the developing telencephalon revealed upon combined loss of both genes

Overview of attention for article published in Neural Development, November 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Novel functions of LHX2 and PAX6 in the developing telencephalon revealed upon combined loss of both genes
Published in
Neural Development, November 2017
DOI 10.1186/s13064-017-0097-y
Pubmed ID
Authors

Geeta Godbole, Achira Roy, Ashwin S. Shetty, Shubha Tole

Abstract

Patterning of the telencephalic neuroepithelium is a tightly regulated process controlled by transcription factors and signalling molecules. The cortical primordium is flanked by two signalling centres, the hem medially, and the antihem laterally. The hem induces the formation of the hippocampus in adjacent neuroepithelium. Therefore, the position of the hem defines the position of the hippocampus in the brain. The antihem is positioned at the boundary between the dorsal and ventral telencephalon and proposed to provide patterning cues during development. LIM-homeodomain (LIM-HD) transcription factor LHX2 suppresses both hem and antihem fate in the cortical neuroepithelium. Upon loss of Lhx2, medial cortical neuroepithelium is transformed into hem, whereas lateral cortical neuroepithelium is transformed into antihem. Here, we show that transcription factor PAX6, known to regulate patterning of the lateral telencephalon, restricts this tissue from transforming into hem upon loss of Lhx2. When Lhx2 and Pax6 are both deleted, the cortical hem expands to occupy almost the complete extent of the cortical primordium, indicating that both factors act to suppress hem fate in the lateral telencephalon. Furthermore, the shift in the pallial-subpallial boundary and absence of the antihem, observed in the Pax6 mutant, are both restored in the Lhx2; Pax6 double mutant. Together, these results not only reveal a novel function for LHX2 in regulating dorsoventral patterning in the telencephalon, but also identify PAX6 as a fundamental regulator of where the hem can form, and therefore implicate this molecule as a determinant of hippocampal positioning.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 21%
Student > Ph. D. Student 8 21%
Student > Bachelor 5 13%
Researcher 5 13%
Student > Doctoral Student 2 5%
Other 1 3%
Unknown 10 26%
Readers by discipline Count As %
Neuroscience 14 36%
Biochemistry, Genetics and Molecular Biology 8 21%
Agricultural and Biological Sciences 3 8%
Medicine and Dentistry 2 5%
Environmental Science 1 3%
Other 0 0%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 November 2017.
All research outputs
#15,483,707
of 23,008,860 outputs
Outputs from Neural Development
#135
of 226 outputs
Outputs of similar age
#203,337
of 324,977 outputs
Outputs of similar age from Neural Development
#2
of 2 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 226 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,977 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 2 others from the same source and published within six weeks on either side of this one.