↓ Skip to main content

Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhancing biogas plant production using pig manure and corn silage by adding wheat straw processed with liquid hot water and steam explosion
Published in
Biotechnology for Biofuels and Bioproducts, November 2017
DOI 10.1186/s13068-017-0922-x
Pubmed ID
Authors

Michał Gaworski, Sławomir Jabłoński, Izabela Pawlaczyk-Graja, Rafał Ziewiecki, Piotr Rutkowski, Anna Wieczyńska, Roman Gancarz, Marcin Łukaszewicz

Abstract

Pig manure utilization and valorization is an important topic with tightening regulations focused on ecological and safety issues. By itself pig manure is a poor substrate for biogas production because of its excessive nitrogen content relative to available organic carbon. Such substrate is alkaline, and methanogenesis can be suppressed, and so additional substrates with high organic carbon must be added. The most promising is straw, which is available from adjacent biogas plant cultures. However, the abundant lignocellulosic biomass of wheat straw undergoes slow decomposition, and only a fraction of the chemical energy can be converted into biogas; thus economical methods for pretreatment increasing bioavailability are sought. A method was investigated to increase the methane yield in a full-scale plant for co-fermenting pig manure with corn silage, which was the default substrate in the original source reactors. Increased lignocellulosic bioavailability of wheat straw was achieved by combining liquid hot water (LHW) and steam explosion (SE). According to FT-IR analysis, the treatment resulted in hemicellulose hydrolysis, partial cellulose depolymerization, and lignin bond destruction. Low-mass polysaccharides (0.6 × 10(3) g mol(-1)) had significantly higher concentration in the leachate of LHW-SE wheat straw than raw wheat straw. The methanogenic potential was evaluated using inoculum from two different biogas plants to study the influence of microorganism consortia. The yield was 24-34% higher after the pretreatment process. In a full-scale biogas plant, the optimal conditions were ~ 165 °C, ~ 2.33 MPa, and 10 min in LHW and ~ 65 °C and ~ 0.1 MPa for SE. The processes did not generate detectable inhibitors according to GC-MS analysis, such as furfural and 5-hydroxymethylfurfural. The LHW-SE combined pretreatment process increases the bioavailability of carbohydrates from wheat straw. The LHW-SE treated wheat straw gave similar biogas yields to corn silage, thus enables at least partial replacement of corn silage and is good for diversification of substrates. Surprisingly, microorganisms consortia from other biogas plant fed with other substrates may have higher efficiency in utilization of tested substrate. Thus, methanogenic consortia may be considered in the process of optimization at industrial scale. The efficiency was calculated, and the LHW-SE may be profitable at full industrial scale and further optimization is proposed.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 97 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 13%
Student > Master 12 12%
Researcher 11 11%
Student > Ph. D. Student 11 11%
Student > Doctoral Student 4 4%
Other 14 14%
Unknown 32 33%
Readers by discipline Count As %
Engineering 14 14%
Agricultural and Biological Sciences 12 12%
Chemical Engineering 11 11%
Environmental Science 8 8%
Biochemistry, Genetics and Molecular Biology 5 5%
Other 11 11%
Unknown 36 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#1,416
of 1,578 outputs
Outputs of similar age
#301,000
of 342,671 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#31
of 42 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,671 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.