↓ Skip to main content

Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats

Overview of attention for article published in Stem Cell Research & Therapy, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats
Published in
Stem Cell Research & Therapy, November 2017
DOI 10.1186/s13287-017-0718-8
Pubmed ID
Authors

Huan Yang, Su Wu, Ran Feng, Junjiu Huang, Lixiang Liu, Feng Liu, Yuqing Chen

Abstract

Intrauterine adhesion (IUA) is a common uterine cavity disease which can be caused by mechanical damage that may eventually lead to infertility and pregnancy abnormalities. Since the effect of therapeutic drugs appears disappointing, cell therapy has emerged as an alternative choice for endometrium regeneration. The aim of this study is to investigate whether the combination of hydrogel Pluronic F-127 (PF-127), Vitamin C (Vc), and a bone marrow stromal cell (BMSC) mixture could be a feasible strategy to improve the endometrial regeneration in a mechanical damage model of IUA in rats. Firstly, PF-127 cytotoxicity and the effect of Vc was tested in vitro using the Annexin V/propidium iodide (PI) apoptosis test, cell count kit (CCK) growth test, and enzyme-linked immunosorbent assay (ELISA). For the establishment of the rat IUA model, a 2-mm transverse incision in the uterus was prepared at the upper end, and 1.5- to 2.0-cm endometrial damage was scraped. Rats were randomly assigned to five groups to investigate the combined strategy on IUA uterine regeneration: a sham group, an IUA control group, an IUA BMSC encapsulated in PF-127 plus Vc group, an IUA BMSC plus Vc group, and an IUA PF-127 plus Vc group. A cell mixture was injected into the uterine horn while making the IUA model. Eight weeks after cell transplantation, the rats were sacrificed and the uterine was dissected for analysis. Endometrial thickness, gland number, fibrosis area, and the expression of marker proteins for endometrial membrane were examined by hematoxylin and eosin staining, Masson's staining, and immunohistochemistry. Vc promoted the survival and health of PF-127-encapsulated BMSCs in vitro. When this combination was transplanted in vivo, the endometrium showed better restoration as the endometrium membrane became thicker and had more glands and less fibrosis areas. The expression of cytokeratin, von Willebrand Factor (vWF), was also restored. The proinflammatory cytokine interleukin-1β (IL-1β) was significantly lower compared with the control group. Vc alleviates the cytotoxic effect of PF-127 and promotes cell survival and growth in rat BMSC encapsulation. Thus, a cell therapy strategy containing biomaterial scaffold, BMSCs and the modulatory factor Vc promotes the restoration of damaged IUA endometrium.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 27%
Student > Bachelor 5 19%
Student > Ph. D. Student 4 15%
Other 2 8%
Student > Postgraduate 2 8%
Other 2 8%
Unknown 4 15%
Readers by discipline Count As %
Medicine and Dentistry 6 23%
Biochemistry, Genetics and Molecular Biology 4 15%
Agricultural and Biological Sciences 3 12%
Immunology and Microbiology 1 4%
Nursing and Health Professions 1 4%
Other 4 15%
Unknown 7 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 July 2018.
All research outputs
#7,919,971
of 14,613,297 outputs
Outputs from Stem Cell Research & Therapy
#531
of 1,351 outputs
Outputs of similar age
#173,287
of 402,244 outputs
Outputs of similar age from Stem Cell Research & Therapy
#56
of 170 outputs
Altmetric has tracked 14,613,297 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,351 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 402,244 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 170 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.