↓ Skip to main content

Inhaled magnesium sulfate in the treatment of acute asthma

Overview of attention for article published in Cochrane database of systematic reviews, November 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

twitter
40 tweeters
facebook
3 Facebook pages
wikipedia
1 Wikipedia page

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
111 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhaled magnesium sulfate in the treatment of acute asthma
Published in
Cochrane database of systematic reviews, November 2017
DOI 10.1002/14651858.cd003898.pub6
Pubmed ID
Authors

Rachel Knightly, Stephen J Milan, Rodney Hughes, Jennifer A Knopp-Sihota, Brian H Rowe, Rebecca Normansell, Colin Powell

Abstract

Asthma exacerbations can be frequent and range in severity from mild to life-threatening. The use of magnesium sulfate (MgSO₄) is one of numerous treatment options available during acute exacerbations. While the efficacy of intravenous MgSO₄ has been demonstrated, the role of inhaled MgSO₄ is less clear. To determine the efficacy and safety of inhaled MgSO₄ administered in acute asthma. to quantify the effects of inhaled MgSO₄ I) in addition to combination treatment with inhaled β₂-agonist and ipratropium bromide; ii) in addition to inhaled β₂-agonist; and iii) in comparison to inhaled β₂-agonist. We identified randomised controlled trials (RCTs) from the Cochrane Airways Group register of trials and online trials registries in September 2017. We supplemented these with searches of the reference lists of published studies and by contact with trialists. RCTs including adults or children with acute asthma were eligible for inclusion in the review. We included studies if patients were treated with nebulised MgSO₄ alone or in combination with β₂-agonist or ipratropium bromide or both, and were compared with the same co-intervention alone or inactive control. Two review authors independently assessed trial selection, data extraction and risk of bias. We made efforts to collect missing data from authors. We present results, with their 95% confidence intervals (CIs), as mean differences (MDs) or standardised mean differences (SMDs) for pulmonary function, clinical severity scores and vital signs; and risk ratios (RRs) for hospital admission. We used risk differences (RDs) to analyse adverse events because events were rare. Twenty-five trials (43 references) of varying methodological quality were eligible; they included 2907 randomised patients (2777 patients completed). Nine of the 25 included studies involved adults; four included adult and paediatric patients; eight studies enrolled paediatric patients; and in the remaining four studies the age of participants was not stated. The design, definitions, intervention and outcomes were different in all 25 studies; this heterogeneity made direct comparisons difficult. The quality of the evidence presented ranged from high to very low, with most outcomes graded as low or very low. This was largely due to concerns about the methodological quality of the included studies and imprecision in the pooled effect estimates. Inhaled magnesium sulfate in addition to inhaled β₂-agonist and ipratropiumWe included seven studies in this comparison. Although some individual studies reported improvement in lung function indices favouring the intervention group, results were inconsistent overall and the largest study reporting this outcome found no between-group difference at 60 minutes (MD -0.3 % predicted peak expiratory flow rate (PEFR), 95% CI -2.71% to 2.11%). Admissions to hospital at initial presentation may be reduced by the addition of inhaled magnesium sulfate (RR 0.95, 95% CI 0.91 to 1.00; participants = 1308; studies = 4; I² = 52%) but no difference was detected for re-admissions or escalation of care to ITU/HDU. Serious adverse events during admission were rare. There was no difference between groups for all adverse events during admission (RD 0.01, 95% CI -0.03 to 0.05; participants = 1197; studies = 2). Inhaled magnesium sulfate in addition to inhaled β₂-agonistWe included 13 studies in this comparison. Although some individual studies reported improvement in lung function indices favouring the intervention group, none of the pooled results showed a conclusive benefit as measured by FEV1 or PEFR. Pooled results for hospital admission showed a point estimate that favoured the combination of MgSO₄ and β₂-agonist, but the confidence interval includes the possibility of admissions increasing in the intervention group (RR 0.78, 95% CI 0.52 to 1.15; participants = 375; studies = 6; I² = 0%). There were no serious adverse events reported by any of the included studies and no between-group difference for all adverse events (RD -0.01, 95% CI -0.05 to 0.03; participants = 694; studies = 5). Inhaled magnesium sulfate versus inhaled β₂-agonistWe included four studies in this comparison. The evidence for the efficacy of β₂-agonists in acute asthma is well-established and therefore this could be considered a historical comparison. Two studies reported a benefit of β₂-agonist over MgSO₄ alone for PEFR and two studies reported no difference; we did not pool these results. Admissions to hospital were only reported by one small study and events were rare, leading to an uncertain result. No serious adverse events were reported in any of the studies in this comparison; one small study reported mild to moderate adverse events but the result is imprecise. Treatment with nebulised MgSO₄ may result in modest additional benefits for lung function and hospital admission when added to inhaled β₂-agonists and ipratropium bromide, but our confidence in the evidence is low and there remains substantial uncertainty. The recent large, well-designed trials have generally not demonstrated clinically important benefits. Nebulised MgSO₄ does not appear to be associated with an increase in serious adverse events. Individual studies suggest that those with more severe attacks and attacks of shorter duration may experience a greater benefit but further research into subgroups is warranted.Despite including 24 trials in this review update we were unable to pool data for all outcomes of interest and this has limited the strength of the conclusions reached. A core outcomes set for studies in acute asthma is needed. This is particularly important in paediatric studies where measuring lung function at the time of an exacerbation may not be possible. Placebo-controlled trials in patients not responding to standard maximal treatment, including inhaled β₂-agonists and ipratropium bromide and systemic steroids, may help establish if nebulised MgSO₄ has a role in acute asthma. However, the accumulating evidence suggests that a substantial benefit may be unlikely.

Twitter Demographics

The data shown below were collected from the profiles of 40 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 111 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 2%
Unknown 109 98%

Demographic breakdown

Readers by professional status Count As %
Unspecified 24 22%
Student > Master 18 16%
Student > Bachelor 14 13%
Other 14 13%
Researcher 12 11%
Other 28 25%
Unknown 1 <1%
Readers by discipline Count As %
Medicine and Dentistry 57 51%
Unspecified 29 26%
Nursing and Health Professions 9 8%
Psychology 4 4%
Social Sciences 3 3%
Other 8 7%
Unknown 1 <1%

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 October 2019.
All research outputs
#630,205
of 13,617,861 outputs
Outputs from Cochrane database of systematic reviews
#2,000
of 10,681 outputs
Outputs of similar age
#28,834
of 393,287 outputs
Outputs of similar age from Cochrane database of systematic reviews
#57
of 219 outputs
Altmetric has tracked 13,617,861 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,681 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.1. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,287 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 219 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.