↓ Skip to main content

Characterization of lpaH2 gene corresponding to lipopeptide synthesis in Bacillus amyloliquefaciens HAB-2

Overview of attention for article published in BMC Microbiology, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of lpaH2 gene corresponding to lipopeptide synthesis in Bacillus amyloliquefaciens HAB-2
Published in
BMC Microbiology, December 2017
DOI 10.1186/s12866-017-1134-z
Pubmed ID
Authors

Pengfei Jin, Haonan Wang, Wenbo Liu, Weiguo Miao

Abstract

Bacillus spp. have prominent ability to suppress plant pathogens and corresponding diseases. Previous analyses of Bacillus spp. revealed numerous gene clusters involved in nonribosomal synthesis of cyclic lipopeptides with distinct antimicrobial action. The 4'-phosphopantetheinyl transferase (PPTase) encoded by sfp gene is a key factor in lipopeptide synthesis in Bacillus spp. In previous study, B. amyloliquefaciens strain HAB-2 was found to inhibit a broad range of plant pathogens, which was attributed to its secondary metabolite lipopeptide. A sfp homologue lpaH2 which encoded phosphopantetheinyl transferase but shared 71% sequence similarity was detected in strain HAB-2. Disruption of lpaH2 gene resulted in losing the ability of strain HAB-2 to produce lipopeptide, as well as antifungal and hemolytic activities. When lpaH2 replaced sfp gene of B. subtilis strain 168, a non-lipopeptide producer, the genetically engineered strain 168 could produced lipopeptides and recovered antifungal activity. Quantitative PCR assays indicated that, the expression level of lpaH2 in B. subtilis 168 strain decrease to 0.27-fold compared that of the wild type B. amyloliquefaciens strain HAB-2. Few studies have reported about lpa gene which can replace sfp gene in the different species. Taken together, our study showed for the first time that lpaH2 from B. amyloliquefaciens could replace sfp gene.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 18%
Professor > Associate Professor 2 12%
Student > Doctoral Student 2 12%
Other 1 6%
Lecturer > Senior Lecturer 1 6%
Other 2 12%
Unknown 6 35%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 29%
Environmental Science 2 12%
Biochemistry, Genetics and Molecular Biology 1 6%
Nursing and Health Professions 1 6%
Immunology and Microbiology 1 6%
Other 2 12%
Unknown 5 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 December 2017.
All research outputs
#17,921,555
of 23,009,818 outputs
Outputs from BMC Microbiology
#2,023
of 3,212 outputs
Outputs of similar age
#306,832
of 439,388 outputs
Outputs of similar age from BMC Microbiology
#15
of 28 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,212 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,388 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.