↓ Skip to main content

Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues
Published in
Biotechnology for Biofuels and Bioproducts, November 2017
DOI 10.1186/s13068-017-0925-7
Pubmed ID
Authors

Nathan Kruer-Zerhusen, Markus Alahuhta, Vladimir V. Lunin, Michael E. Himmel, Yannick J. Bomble, David B. Wilson

Abstract

Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 30%
Researcher 10 16%
Student > Master 7 11%
Other 4 6%
Student > Bachelor 4 6%
Other 4 6%
Unknown 15 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 29%
Agricultural and Biological Sciences 13 21%
Chemistry 5 8%
Chemical Engineering 4 6%
Computer Science 1 2%
Other 2 3%
Unknown 20 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2017.
All research outputs
#8,478,408
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#578
of 1,578 outputs
Outputs of similar age
#155,754
of 445,786 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#14
of 41 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,786 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.