↓ Skip to main content

A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway

Overview of attention for article published in Nature Medicine, December 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (61st percentile)

Citations

dimensions_citation
94 Dimensions

Readers on

mendeley
109 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway
Published in
Nature Medicine, December 2017
DOI 10.1038/nm.4452
Pubmed ID
Authors

Lorenz H Lehmann, Zegeye H Jebessa, Michael M Kreusser, Axel Horsch, Tao He, Mariya Kronlage, Matthias Dewenter, Viviana Sramek, Ulrike Oehl, Jutta Krebs-Haupenthal, Albert H von der Lieth, Andrea Schmidt, Qiang Sun, Julia Ritterhoff, Daniel Finke, Mirko Völkers, Andreas Jungmann, Sven W Sauer, Christian Thiel, Alexander Nickel, Michael Kohlhaas, Michaela Schäfer, Carsten Sticht, Christoph Maack, Norbert Gretz, Michael Wagner, Ali El-Armouche, Lars S Maier, Juan E Camacho Londoño, Benjamin Meder, Marc Freichel, Hermann-Josef Gröne, Patrick Most, Oliver J Müller, Stephan Herzig, Eileen E M Furlong, Hugo A Katus, Johannes Backs

Abstract

The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.

X Demographics

X Demographics

The data shown below were collected from the profiles of 21 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 109 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 109 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 24 22%
Researcher 13 12%
Student > Bachelor 11 10%
Student > Master 11 10%
Professor 8 7%
Other 14 13%
Unknown 28 26%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 27 25%
Medicine and Dentistry 23 21%
Agricultural and Biological Sciences 13 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 2%
Physics and Astronomy 2 2%
Other 10 9%
Unknown 32 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 74. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 October 2018.
All research outputs
#492,052
of 23,011,300 outputs
Outputs from Nature Medicine
#1,539
of 8,540 outputs
Outputs of similar age
#12,484
of 439,919 outputs
Outputs of similar age from Nature Medicine
#23
of 60 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,540 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 98.5. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,919 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 60 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.