↓ Skip to main content

Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions

Overview of attention for article published in BMC Plant Biology, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions
Published in
BMC Plant Biology, December 2017
DOI 10.1186/s12870-017-1195-z
Pubmed ID
Authors

Maria D. Logacheva, Anastasiya A. Krinitsina, Maxim S. Belenikin, Kamil Khafizov, Evgenii A. Konorov, Sergey V. Kuptsov, Anna S. Speranskaya

Abstract

Ferns are large and underexplored group of vascular plants (~ 11 thousands species). The genomic data available by now include low coverage nuclear genomes sequences and partial sequences of mitochondrial genomes for six species and several plastid genomes. We characterized plastid genomes of three species of Dryopteris, which is one of the largest fern genera, using sequencing of chloroplast DNA enriched samples and performed comparative analysis with available plastomes of Polypodiales, the most species-rich group of ferns. We also sequenced the plastome of Adianthum hispidulum (Pteridaceae). Unexpectedly, we found high variability in the IR region, including duplication of rrn16 in D. blanfordii, complete loss of trnI-GAU in D. filix-mas, its pseudogenization due to the loss of an exon in D. blanfordii. Analysis of previously reported plastomes of Polypodiales demonstrated that Woodwardia unigemmata and Lepisorus clathratus have unusual insertions in the IR region. The sequence of these inserted regions has high similarity to several LSC fragments of ferns outside of Polypodiales and to spacer between tRNA-CGA and tRNA-TTT genes of mitochondrial genome of Asplenium nidus. We suggest that this reflects the ancient DNA transfer from mitochondrial to plastid genome occurred in a common ancestor of ferns. We determined the marked conservation of gene content and relative evolution rate of genes and intergenic spacers in the IRs of Polypodiales. Faster evolution of the four intergenic regions had been demonstrated (trnA- orf42, rrn16-rps12, rps7-psbA and ycf2-trnN). IRs of Polypodiales plastomes are dynamic, driven by such events as gene loss, duplication and putative lateral transfer from mitochondria.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 28%
Researcher 5 20%
Student > Master 3 12%
Professor 2 8%
Student > Doctoral Student 2 8%
Other 1 4%
Unknown 5 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 40%
Biochemistry, Genetics and Molecular Biology 5 20%
Environmental Science 2 8%
Nursing and Health Professions 1 4%
Psychology 1 4%
Other 1 4%
Unknown 5 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 July 2018.
All research outputs
#15,487,739
of 23,015,156 outputs
Outputs from BMC Plant Biology
#1,500
of 3,283 outputs
Outputs of similar age
#269,354
of 441,976 outputs
Outputs of similar age from BMC Plant Biology
#37
of 91 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,283 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 441,976 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 91 others from the same source and published within six weeks on either side of this one. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.