↓ Skip to main content

Warburg effect hypothesis in autism Spectrum disorders

Overview of attention for article published in Molecular Brain, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#49 of 1,186)
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (94th percentile)

Mentioned by

blogs
2 blogs
twitter
9 X users

Citations

dimensions_citation
68 Dimensions

Readers on

mendeley
92 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Warburg effect hypothesis in autism Spectrum disorders
Published in
Molecular Brain, January 2018
DOI 10.1186/s13041-017-0343-6
Pubmed ID
Authors

Alexandre Vallée, Jean-Noël Vallée

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disease which is characterized by a deficit in social interactions and communication with repetitive and restrictive behavior. In altered cells, metabolic enzymes are modified by the dysregulation of the canonical WNT/β-catenin pathway. In ASD, the canonical WNT/β-catenin pathway is upregulated. We focus this review on the hypothesis of Warburg effect stimulated by the overexpression of the canonical WNT/β-catenin pathway in ASD. Upregulation of WNT/β-catenin pathway induces aerobic glycolysis, named Warburg effect, through activation of glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactate dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). The aerobic glycolysis consists to a supply of a large part of glucose into lactate regardless of oxygen. Aerobic glycolysis is less efficient in terms of ATP production than oxidative phosphorylation because of the shunt of the TCA cycle. Dysregulation of energetic metabolism might promote cell deregulation and progression of ASD. Warburg effect regulation could be an attractive target for developing therapeutic interventions in ASD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 92 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 92 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 14%
Researcher 11 12%
Unspecified 8 9%
Student > Master 8 9%
Student > Bachelor 6 7%
Other 14 15%
Unknown 32 35%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 18%
Medicine and Dentistry 9 10%
Unspecified 8 9%
Agricultural and Biological Sciences 8 9%
Psychology 6 7%
Other 11 12%
Unknown 33 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 November 2023.
All research outputs
#1,897,176
of 24,858,211 outputs
Outputs from Molecular Brain
#49
of 1,186 outputs
Outputs of similar age
#43,174
of 453,985 outputs
Outputs of similar age from Molecular Brain
#2
of 17 outputs
Altmetric has tracked 24,858,211 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,186 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 453,985 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 94% of its contemporaries.