↓ Skip to main content

Antibiotic Resistance Protocols

Overview of attention for book
Cover of 'Antibiotic Resistance Protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Methods for Measuring the Production of Quorum Sensing Signal Molecules
  3. Altmetric Badge
    Chapter 2 Construction and Use of Staphylococcus aureus Strains to Study Within-Host Infection Dynamics
  4. Altmetric Badge
    Chapter 3 Method for Detecting and Studying Genome-Wide Mutations in Single Living Cells in Real Time
  5. Altmetric Badge
    Chapter 4 Detecting Phenotypically Resistant Mycobacterium tuberculosis Using Wavelength Modulated Raman Spectroscopy
  6. Altmetric Badge
    Chapter 5 A Flow Cytometry Method for Assessing M. tuberculosis Responses to Antibiotics
  7. Altmetric Badge
    Chapter 6 Application of Continuous Culture for Assessing Antibiotic Activity Against Mycobacterium tuberculosis
  8. Altmetric Badge
    Chapter 7 Real-Time Digital Bright Field Technology for Rapid Antibiotic Susceptibility Testing
  9. Altmetric Badge
    Chapter 8 Enhanced Methodologies for Detecting Phenotypic Resistance in Mycobacteria
  10. Altmetric Badge
    Chapter 9 Methods to Determine Mutational Trajectories After Experimental Evolution of Antibiotic Resistance
  11. Altmetric Badge
    Chapter 10 Selection of ESBL-Producing E. coli in a Mouse Intestinal Colonization Model
  12. Altmetric Badge
    Chapter 11 Transcriptional Profiling Mycobacterium tuberculosis from Patient Sputa
  13. Altmetric Badge
    Chapter 12 Direct in Gel Genomic Detection of Antibiotic Resistance Genes in S1 Pulsed Field Electrophoresis Gels
  14. Altmetric Badge
    Chapter 13 Using RT qPCR for Quantifying Mycobacteria marinum from In Vitro and In Vivo Samples
  15. Altmetric Badge
    Chapter 14 Use of Larval Zebrafish Model to Study Within-Host Infection Dynamics
  16. Altmetric Badge
    Chapter 15 A Method to Evaluate Persistent Mycobacterium tuberculosis In Vitro and in the Cornell Mouse Model of Tuberculosis
Attention for Chapter 9: Methods to Determine Mutational Trajectories After Experimental Evolution of Antibiotic Resistance
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Methods to Determine Mutational Trajectories After Experimental Evolution of Antibiotic Resistance
Chapter number 9
Book title
Antibiotic Resistance Protocols
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7638-6_9
Pubmed ID
Book ISBNs
978-1-4939-7636-2, 978-1-4939-7638-6
Authors

Douglas L. Huseby, Diarmaid Hughes

Abstract

The evolution of bacterial resistance to antibiotics by mutation within the genome (as distinct from horizontal gene transfer of new material into a genome) could occur in a single step but is usually a multistep process. Resistance evolution can be studied in laboratory environments by serial passage of bacteria in liquid culture or on agar, with selection at constant, or varying, concentrations of drug. Whole genome sequencing can be used to make an initial analysis of the evolved mutants. The trajectory of evolution can be determined by sequence analysis of strains from intermediate steps in the evolution, complemented by phenotypic analysis of genetically reconstructed isogenic strains that recapitulate the intermediate steps in the evolution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 27%
Other 2 13%
Student > Ph. D. Student 2 13%
Student > Bachelor 1 7%
Student > Master 1 7%
Other 1 7%
Unknown 4 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 47%
Immunology and Microbiology 2 13%
Arts and Humanities 1 7%
Agricultural and Biological Sciences 1 7%
Business, Management and Accounting 1 7%
Other 0 0%
Unknown 3 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2018.
All research outputs
#13,062,324
of 23,015,156 outputs
Outputs from Methods in molecular biology
#3,319
of 13,165 outputs
Outputs of similar age
#207,201
of 442,344 outputs
Outputs of similar age from Methods in molecular biology
#283
of 1,498 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,165 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,344 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.