↓ Skip to main content

Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab

Overview of attention for article published in Respiratory Research, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
18 X users
facebook
1 Facebook page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab
Published in
Respiratory Research, January 2018
DOI 10.1186/s12931-018-0720-4
Pubmed ID
Authors

Mark D. Sternlicht, Ute Wirkner, Sebastian Bickelhaupt, Ramon Lopez Perez, Alexandra Tietz, Kenneth E. Lipson, Todd W. Seeley, Peter E. Huber

Abstract

Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

X Demographics

X Demographics

The data shown below were collected from the profiles of 18 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 11%
Other 3 8%
Student > Ph. D. Student 3 8%
Student > Master 3 8%
Lecturer 1 3%
Other 7 19%
Unknown 15 42%
Readers by discipline Count As %
Medicine and Dentistry 5 14%
Biochemistry, Genetics and Molecular Biology 3 8%
Nursing and Health Professions 2 6%
Agricultural and Biological Sciences 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 3 8%
Unknown 20 56%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 July 2020.
All research outputs
#3,133,773
of 25,382,440 outputs
Outputs from Respiratory Research
#378
of 3,062 outputs
Outputs of similar age
#68,368
of 451,277 outputs
Outputs of similar age from Respiratory Research
#11
of 55 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,277 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.