↓ Skip to main content

Glycaemic control targets after traumatic brain injury: a systematic review and meta-analysis

Overview of attention for article published in Critical Care, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (93rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

1 blog
38 X users
2 Facebook pages


64 Dimensions

Readers on

154 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Glycaemic control targets after traumatic brain injury: a systematic review and meta-analysis
Published in
Critical Care, January 2018
DOI 10.1186/s13054-017-1883-y
Pubmed ID

Jeroen Hermanides, Mark P. Plummer, Mark Finnis, Adam M. Deane, Jonathan P. Coles, David K. Menon


Optimal glycaemic targets in traumatic brain injury (TBI) remain unclear. We performed a systematic review and meta-analysis of randomised controlled trials (RCTs) comparing intensive with conventional glycaemic control in TBI requiring admission to an intensive care unit (ICU). We systematically searched MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials to November 2016. Outcomes of interest included ICU and in-hospital mortality, poor neurological outcome, the incidence of hypoglycaemia and infective complications. Data were analysed by pairwise random effects models with secondary analysis of differing levels of conventional glycaemic control. Ten RCTs, involving 1066 TBI patients were included. Three studies were conducted exclusively in a TBI population, whereas in seven trials, the TBI population was a sub-cohort of a mixed neurocritical or general ICU population. Glycaemic targets with intensive control ranged from 4.4 to 6.7 mmol/L, while conventional targets aimed to keep glucose levels below thresholds of 8.4-12 mmol/L. Conventional versus intensive control showed no association with ICU or hospital mortality (relative risk (RR) (95% CI) 0.93 (0.68-1.27), P = 0.64 and 1.07 (0.84-1.36), P = 0.62, respectively). The risk of a poor neurological outcome was higher with conventional control (RR (95% CI) = 1.10 (1.001-1.24), P = 0.047). However, severe hypoglycaemia occurred less frequently with conventional control (RR (95% CI) = 0.22 (0.09-0.52), P = 0.001). This meta-analysis of intensive glycaemic control shows no association with reduced mortality in TBI. Intensive glucose control showed a borderline significant reduction in the risk of poor neurological outcome, but markedly increased the risk of hypoglycaemia. These contradictory findings should motivate further research.

X Demographics

X Demographics

The data shown below were collected from the profiles of 38 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 154 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 154 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 23 15%
Other 16 10%
Researcher 13 8%
Student > Master 13 8%
Student > Postgraduate 12 8%
Other 45 29%
Unknown 32 21%
Readers by discipline Count As %
Medicine and Dentistry 70 45%
Nursing and Health Professions 17 11%
Neuroscience 8 5%
Unspecified 4 3%
Psychology 3 2%
Other 15 10%
Unknown 37 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 30. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 December 2021.
All research outputs
of 25,382,440 outputs
Outputs from Critical Care
of 6,555 outputs
Outputs of similar age
of 451,056 outputs
Outputs of similar age from Critical Care
of 92 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,555 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,056 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 93% of its contemporaries.
We're also able to compare this research output to 92 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.