↓ Skip to main content

A Genome Scan for Eye Color in 502 Twin Families: Most Variation is due to a QTL on Chromosome 15q

Overview of attention for article published in this source, April 2004
Altmetric Badge

Mentioned by

news
1 news outlet
twitter
1 X user
wikipedia
6 Wikipedia pages

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Genome Scan for Eye Color in 502 Twin Families: Most Variation is due to a QTL on Chromosome 15q
DOI 10.1375/136905204323016186
Pubmed ID
Authors

Gu Zhu, David M. Evans, David L. Duffy, Grant W. Montgomery, Sarah E. Medland, Nathan A. Gillespie, Kelly R. Ewen, Mary Jewell, Yew Wah Liew, Nicholas K. Hayward, Richard A. Sturm, Jeffrey M. Trent, Nicholas G. Martin

Abstract

We have rated eye color on a 3-point scale (1 = blue/grey, 2 = hazel/green, 3 = brown) in 502 twin families and carried out a 5-10 cM genome scan (400-757 markers). We analyzed eye color as a threshold trait and performed multipoint sib pair linkage analysis using variance components analysis in Mx. A lod of 19.2 was found at the marker D15S1002, less than 1 cM from OCA2, which has been previously implicated in eye color variation. We estimate that 74% of variance in eye color liability is due to this QTL and a further 18% due to polygenic effects. However, a large shoulder on this peak suggests that other loci affecting eye color may be telomeric of OCA2 and inflating the QTL estimate. No other peaks reached genome-wide significance, although lods > 2 were seen on 5p and 14q and lods >1 were additionally seen on chromosomes 2, 3, 6, 7, 8, 9, 17 and 18. Most of these secondary peaks were reduced or eliminated when we repeated the scan as a two locus analysis with the 15q linkage included, although this does not necessarily exclude them as false positives. We also estimated the interaction between the 15q QTL and the other marker locus but there was only minor evidence for additive x additive epistasis. Elaborating the analysis to the full two-locus model including non-additive main effects and interactions did not strengthen the evidence for epistasis. We conclude that most variation in eye color in Europeans is due to polymorphism in OCA2 but that there may be modifiers at several other loci.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 6%
Unknown 33 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 17%
Professor > Associate Professor 6 17%
Student > Bachelor 5 14%
Student > Ph. D. Student 5 14%
Professor 3 9%
Other 6 17%
Unknown 4 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 37%
Biochemistry, Genetics and Molecular Biology 9 26%
Psychology 2 6%
Medicine and Dentistry 2 6%
Physics and Astronomy 1 3%
Other 3 9%
Unknown 5 14%