↓ Skip to main content

Rice tocopherol deficiency 1 encodes a homogentisate phytyltransferase essential for tocopherol biosynthesis and plant development in rice

Overview of attention for article published in Plant Cell Reports, February 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)

Mentioned by

twitter
6 tweeters

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Rice tocopherol deficiency 1 encodes a homogentisate phytyltransferase essential for tocopherol biosynthesis and plant development in rice
Published in
Plant Cell Reports, February 2018
DOI 10.1007/s00299-018-2266-9
Pubmed ID
Authors

Yunhui Zhang, Kai Liu, Xiaomei Zhu, Yan Wu, Suobing Zhang, Haiyuan Chen, Jing Ling, Yingjie Wang, Xianwen Fang

Abstract

RTD1 encodes a homogentisate phytyltransferase catalyzing a key step in rice tocopherol biosynthesis, confers cold tolerance and regulates rice development by affecting the accumulation of DELLA protein SLENDER RICE1. Tocopherols are one of the most important lipid-soluble antioxidants having indispensable roles in living organisms. The physiological functions of tocopherols have been comprehensively characterized in animals and artificial membranes. However, genetic and molecular functions of tocopherols in plants are less understood. This study aimed to isolate a tocopherol-deficient mutant rtd1 in rice. The rtd1 mutant showed overall growth retardation throughout the growth period. Most of the agronomic traits were impaired in rtd1. Map-based cloning revealed that the RTD1 gene encoded a homogentisate phytyltransferase, a key enzyme catalyzing the committed step in tocopherol biosynthesis. RTD1 was preferentially expressed in green leafy tissues, and the protein was located in chloroplasts. Cold tolerance was found to be reduced in rtd1. The cold-related C-repeat-binding factor (CBF)/dehydration-responsive element-binding protein 1 (DREB1) genes were significantly upregulated in rtd1 under natural growth conditions. Moreover, rtd1 exhibited a reduced response to gibberellin (GA).The transcript and protein levels of DELLA protein-coding gene SLENDER RICE 1 (SLR1) in rice was increased in rtd1. However, the GA content was not changed, suggesting a transcriptional, not posttranslational, regulation of SLR1. These findings implied that tocopherols play important roles in regulating rice growth and development.

Twitter Demographics

The data shown below were collected from the profiles of 6 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 1 50%
Unknown 1 50%
Readers by discipline Count As %
Medicine and Dentistry 1 50%
Unknown 1 50%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2020.
All research outputs
#7,747,221
of 14,355,388 outputs
Outputs from Plant Cell Reports
#1,075
of 1,669 outputs
Outputs of similar age
#155,935
of 359,199 outputs
Outputs of similar age from Plant Cell Reports
#27
of 41 outputs
Altmetric has tracked 14,355,388 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,669 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,199 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.