↓ Skip to main content

Corneal dystrophies

Overview of attention for article published in Orphanet Journal of Rare Diseases, February 2009
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

news
2 news outlets
twitter
1 X user
patent
1 patent
wikipedia
30 Wikipedia pages

Citations

dimensions_citation
276 Dimensions

Readers on

mendeley
213 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Corneal dystrophies
Published in
Orphanet Journal of Rare Diseases, February 2009
DOI 10.1186/1750-1172-4-7
Pubmed ID
Authors

Gordon K Klintworth

Abstract

The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses, lipidoses, mucolipidoses), and several skin diseases (X-linked ichthyosis, keratosis follicularis spinolosa decalvans). The management of the corneal dystrophies varies with the specific disease. Some are treated medically or with methods that excise or ablate the abnormal corneal tissue, such as deep lamellar endothelial keratoplasty (DLEK) and phototherapeutic keratectomy (PTK). Other less debilitating or asymptomatic dystrophies do not warrant treatment. The prognosis varies from minimal effect on the vision to corneal blindness, with marked phenotypic variability.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 213 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 2 <1%
Japan 1 <1%
Netherlands 1 <1%
Unknown 209 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 29 14%
Student > Ph. D. Student 23 11%
Student > Master 22 10%
Student > Bachelor 22 10%
Student > Doctoral Student 18 8%
Other 47 22%
Unknown 52 24%
Readers by discipline Count As %
Medicine and Dentistry 69 32%
Agricultural and Biological Sciences 30 14%
Biochemistry, Genetics and Molecular Biology 24 11%
Nursing and Health Professions 6 3%
Pharmacology, Toxicology and Pharmaceutical Science 6 3%
Other 13 6%
Unknown 65 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 23. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 May 2023.
All research outputs
#1,493,362
of 23,708,357 outputs
Outputs from Orphanet Journal of Rare Diseases
#159
of 2,737 outputs
Outputs of similar age
#4,149
of 96,502 outputs
Outputs of similar age from Orphanet Journal of Rare Diseases
#2
of 8 outputs
Altmetric has tracked 23,708,357 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,737 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 96,502 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 6 of them.