↓ Skip to main content

Peripersonal space boundaries around the lower limbs

Overview of attention for article published in Experimental Brain Research, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Peripersonal space boundaries around the lower limbs
Published in
Experimental Brain Research, November 2017
DOI 10.1007/s00221-017-5115-0
Pubmed ID
Authors

K. D. Stone, M. Kandula, A. Keizer, H. C. Dijkerman

Abstract

Neurophysiological investigations in non-human primates have shown that bi- and tri-modal fronto-parietal neurons exist that respond to touch on the body and visual (and/or auditory) stimuli near the body. The receptive fields of these neurons extend into space around the body, producing a zone wherein multisensory information is readily integrated. This space around the body, known as peripersonal space (PPS), has also been investigated behaviourally in humans. Some studies have focused on how far into depth the spatial boundaries of PPS extend. Most of these investigations have focused on the upper body (e.g., hands, face, trunk), while little is known about the size of PPS for the lower body (i.e. legs and feet). Thus, the aim of the current study was to delineate a PPS boundary around the lower limbs in healthy participants using a multisensory interaction task. Participants made speeded responses to the presence of vibrations applied to the toes while a task-irrelevant visual stimulus approached towards (Experiment 1) or receded from (Experiment 2) the feet. Participants responded significantly faster to tactile stimuli when the visual stimulus was within approximately 73 cm from the feet, but only when it approached (and not receded from) the legs. This is the first study, to our knowledge, to outline the size of PPS for the lower limbs. These findings could provide insight into the mechanisms underlying multisensory integration in the lower limbs, and add to the current body of knowledge on PPS representations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 24%
Researcher 9 14%
Student > Master 8 12%
Student > Bachelor 5 8%
Student > Postgraduate 4 6%
Other 10 15%
Unknown 14 21%
Readers by discipline Count As %
Psychology 25 38%
Neuroscience 9 14%
Medicine and Dentistry 4 6%
Agricultural and Biological Sciences 2 3%
Nursing and Health Professions 2 3%
Other 4 6%
Unknown 20 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2018.
All research outputs
#14,377,572
of 23,025,074 outputs
Outputs from Experimental Brain Research
#1,768
of 3,241 outputs
Outputs of similar age
#182,874
of 329,276 outputs
Outputs of similar age from Experimental Brain Research
#21
of 40 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,241 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 41st percentile – i.e., 41% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,276 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.