↓ Skip to main content

Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery

Overview of attention for article published in Cochrane database of systematic reviews, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (77th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
9 tweeters
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Alpha-2 adrenergic agonists for the prevention of cardiac complications among adults undergoing surgery
Published in
Cochrane database of systematic reviews, March 2018
DOI 10.1002/14651858.cd004126.pub3
Pubmed ID
Authors

Dallas Duncan, Ashwin Sankar, W Scott Beattie, Duminda N Wijeysundera

Abstract

The surgical stress response plays an important role on the pathogenesis of perioperative cardiac complications. Alpha-2 adrenergic agonists attenuate this response and may help prevent postoperative cardiac complications. To determine the efficacy and safety of α-2 adrenergic agonists for reducing mortality and cardiac complications in adults undergoing cardiac surgery and non-cardiac surgery. We searched CENTRAL (2017, Issue 4), MEDLINE (1950 to April Week 4, 2017), Embase (1980 to May 2017), the Science Citation Index, clinical trial registries, and reference lists of included articles. We included randomized controlled trials that compared α-2 adrenergic agonists (i.e. clonidine, dexmedetomidine or mivazerol) against placebo or non-α-2 adrenergic agonists. Included trials had to evaluate the efficacy and safety of α-2 adrenergic agonists for preventing perioperative mortality or cardiac complications (or both), or measure one or more relevant outcomes (i.e. death, myocardial infarction, heart failure, acute stroke, supraventricular tachyarrhythmia and myocardial ischaemia). Two authors independently assessed trial quality, extracted data and independently performed computer entry of abstracted data. We contacted study authors for additional information. Adverse event data were gathered from the trials. We evaluated included studies using the Cochrane 'Risk of bias' tool, and the quality of the evidence underlying pooled treatment effects using GRADE methodology. Given the clinical heterogeneity between cardiac and non-cardiac surgery, we analysed these subgroups separately. We expressed treatment effects as pooled risk ratios (RR) with 95% confidence intervals (CI). We included 47 trials with 17,039 participants. Of these studies, 24 trials only included participants undergoing cardiac surgery, 23 only included participants undergoing non-cardiac surgery and eight only included participants undergoing vascular surgery. The α-2 adrenergic agonist studied was clonidine in 21 trials, dexmedetomidine in 24 trials and mivazerol in two trials.In non-cardiac surgery, there was high quality evidence that α-2 adrenergic agonists led to a similar risk of all-cause mortality compared with control groups (1.3% with α-2 adrenergic agonists versus 1.7% with control; RR 0.80, 95% CI 0.61 to 1.04; participants = 14,081; studies = 16). Additionally, the risk of cardiac mortality was similar between treatment groups (0.8% with α-2 adrenergic agonists versus 1.0% with control; RR 0.86, 95% CI 0.60 to 1.23; participants = 12,525; studies = 5, high quality evidence). The risk of myocardial infarction was probably similar between treatment groups (RR 0.94, 95% CI 0.69 to 1.27; participants = 13,907; studies = 12, moderate quality evidence). There was no associated effect on the risk of stroke (RR 0.93, 95% CI 0.55 to 1.56; participants = 11,542; studies = 7; high quality evidence). Conversely, α-2 adrenergic agonists probably increase the risks of clinically significant bradycardia (RR 1.59, 95% CI 1.18 to 2.13; participants = 14,035; studies = 16) and hypotension (RR 1.24, 95% CI 1.03 to 1.48; participants = 13,738; studies = 15), based on moderate quality evidence.There was insufficient evidence to determine the effect of α-2 adrenergic agonists on all-cause mortality in cardiac surgery (RR 0.52, 95% CI 0.26 to 1.04; participants = 1947; studies = 16) and myocardial infarction (RR 1.01, 95% CI 0.43 to 2.40; participants = 782; studies = 8), based on moderate quality evidence. There was one cardiac death in the clonidine arm of a study of 22 participants. Based on very limited data, α-2 adrenergic agonists may have reduced the risk of stroke (RR 0.37, 95% CI 0.15 to 0.93; participants = 1175; studies = 7; outcome events = 18; low quality evidence). Conversely, α-2 adrenergic agonists increased the risk of bradycardia from 6.4% to 12.0% (RR 1.88, 95% CI 1.35 to 2.62; participants = 1477; studies = 10; moderate quality evidence), but their effect on hypotension was uncertain (RR 1.19, 95% CI 0.87 to 1.64; participants = 1413; studies = 9; low quality evidence).These results were qualitatively unchanged in subgroup analyses and sensitivity analyses. Our review concludes that prophylactic α-2 adrenergic agonists generally do not prevent perioperative death or major cardiac complications. For non-cardiac surgery, there is moderate-to-high quality evidence that these agents do not prevent death, myocardial infarction or stroke. Conversely, there is moderate quality evidence that these agents have important adverse effects, namely increased risks of hypotension and bradycardia. For cardiac surgery, there is moderate quality evidence that α-2 adrenergic agonists have no effect on the risk of mortality or myocardial infarction, and that they increase the risk of bradycardia. The quality of evidence was inadequate to draw conclusions regarding the effects of alpha-2 agonists on stroke or hypotension during cardiac surgery.

Twitter Demographics

The data shown below were collected from the profiles of 9 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 57 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 11 19%
Student > Master 9 16%
Student > Ph. D. Student 8 14%
Unspecified 7 12%
Student > Postgraduate 6 10%
Other 17 29%
Readers by discipline Count As %
Medicine and Dentistry 32 55%
Unspecified 11 19%
Nursing and Health Professions 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Veterinary Science and Veterinary Medicine 2 3%
Other 6 10%

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2019.
All research outputs
#2,036,273
of 13,789,144 outputs
Outputs from Cochrane database of systematic reviews
#4,747
of 10,739 outputs
Outputs of similar age
#60,417
of 273,842 outputs
Outputs of similar age from Cochrane database of systematic reviews
#119
of 213 outputs
Altmetric has tracked 13,789,144 research outputs across all sources so far. Compared to these this one has done well and is in the 85th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,739 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.3. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 273,842 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 77% of its contemporaries.
We're also able to compare this research output to 213 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.